Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5842, United States of America.
Phys Med Biol. 2018 May 1;63(9):095005. doi: 10.1088/1361-6560/aabb5b.
Deep learning models are highly parameterized, resulting in difficulty in inference and transfer learning for image recognition tasks. In this work, we propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in digital breast tomosynthesis (DBT). The objective is to prune the number of tunable parameters while preserving the classification accuracy. In the first stage transfer learning, 19 632 augmented regions-of-interest (ROIs) from 2454 mass lesions on mammograms were used to train a pre-trained DCNN on ImageNet. In the second stage transfer learning, the DCNN was used as a feature extractor followed by feature selection and random forest classification. The pathway evolution was performed using genetic algorithm in an iterative approach with tournament selection driven by count-preserving crossover and mutation. The second stage was trained with 9120 DBT ROIs from 228 mass lesions using leave-one-case-out cross-validation. The DCNN was reduced by 87% in the number of neurons, 34% in the number of parameters, and 95% in the number of multiply-and-add operations required in the convolutional layers. The test AUC on 89 mass lesions from 94 independent DBT cases before and after pruning were 0.88 and 0.90, respectively, and the difference was not statistically significant (p > 0.05). The proposed DCNN compression approach can reduce the number of required operations by 95% while maintaining the classification performance. The approach can be extended to other deep neural networks and imaging tasks where transfer learning is appropriate.
深度学习模型参数众多,导致其在图像识别任务中的推理和迁移学习较为困难。在这项工作中,我们提出了一种分层路径演化方法,用于压缩用于数字乳腺断层合成(DBT)中肿块分类的深度卷积神经网络(DCNN)。目的是在保留分类准确性的同时减少可调参数的数量。在第一阶段的迁移学习中,使用来自 2454 个乳房 X 光片中肿块的 19632 个扩充感兴趣区域(ROI)来在 ImageNet 上训练预训练的 DCNN。在第二阶段的迁移学习中,将 DCNN 用作特征提取器,然后进行特征选择和随机森林分类。使用遗传算法以迭代方式进行路径演化,使用锦标赛选择,由计数保持交叉和突变驱动。第二阶段使用来自 228 个肿块的 9120 个 DBT ROI 通过留一病例交叉验证进行训练。DCNN 的神经元数量减少了 87%,参数数量减少了 34%,卷积层中所需的乘法和加法操作数量减少了 95%。在修剪前后对 94 个独立 DBT 病例中的 89 个肿块进行测试,AUC 分别为 0.88 和 0.90,差异无统计学意义(p>0.05)。所提出的 DCNN 压缩方法可以在保持分类性能的同时将所需的操作数量减少 95%。该方法可以扩展到其他需要迁移学习的深度神经网络和成像任务中。