Suppr超能文献

基于半监督学习的血小板流式图像快速分析。

Rapid analysis of streaming platelet images by semi-unsupervised learning.

机构信息

Department of Applied Mathematics and Statistics, Stony Brook University, NY, 11794, United States.

Department of Applied Mathematics and Statistics, Stony Brook University, NY, 11794, United States; Department of Biomedical Engineering, Stony Brook University, NY, 11794, United States.

出版信息

Comput Med Imaging Graph. 2021 Apr;89:101895. doi: 10.1016/j.compmedimag.2021.101895. Epub 2021 Mar 11.

Abstract

We developed a fast and accurate deep learning approach employing a semi-unsupervised learning system (SULS) for capturing the real-time noisy, sparse, and ambiguous images of platelet activation. Outperforming several leading supervised learning methods when applied to segment various platelet morphologies, the SULS detects their complex boundaries at submicron resolutions and it massively decreases to only a few hours for segmenting streaming images of 45 million platelets that would have taken 40 years to annotate manually. For the first time, the fast dynamics of pseudopod formation and platelet morphological changes including membrane tethers and transient tethering to vessels are accurately captured.

摘要

我们开发了一种快速而准确的深度学习方法,采用半监督学习系统 (SULS) 来捕捉血小板激活的实时嘈杂、稀疏和模糊图像。当应用于分割各种血小板形态时,SULS 优于几种领先的监督学习方法,它可以以亚微米分辨率检测其复杂边界,并且将分割 4500 万个血小板的流式图像所需的时间从 40 年减少到仅几个小时。这是第一次准确地捕捉到伪足形成和血小板形态变化的快速动态,包括膜系绳和与血管的短暂系绳。

相似文献

1
Rapid analysis of streaming platelet images by semi-unsupervised learning.基于半监督学习的血小板流式图像快速分析。
Comput Med Imaging Graph. 2021 Apr;89:101895. doi: 10.1016/j.compmedimag.2021.101895. Epub 2021 Mar 11.
2
A Tour of Unsupervised Deep Learning for Medical Image Analysis.医学图像分析的无监督深度学习之旅。
Curr Med Imaging. 2021;17(9):1059-1077. doi: 10.2174/1573405617666210127154257.
9
PET image denoising using unsupervised deep learning.使用无监督深度学习进行 PET 图像去噪。
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2780-2789. doi: 10.1007/s00259-019-04468-4. Epub 2019 Aug 29.

本文引用的文献

4
Artery-vein segmentation in fundus images using a fully convolutional network.基于全卷积网络的眼底图像动静脉分割。
Comput Med Imaging Graph. 2019 Sep;76:101636. doi: 10.1016/j.compmedimag.2019.05.004. Epub 2019 Jun 15.
5
Deep learning for cellular image analysis.深度学习在细胞图像分析中的应用。
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.
10
Interactive Cell Segmentation Based on Active and Semi-Supervised Learning.基于主动和半监督学习的交互式细胞分割
IEEE Trans Med Imaging. 2016 Mar;35(3):762-77. doi: 10.1109/TMI.2015.2494582. Epub 2015 Oct 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验