Suppr超能文献

非监督式学习:医学影像分析中的半监督、多实例和迁移学习综述。

Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis.

机构信息

Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

Biomedical Imaging Group Rotterdam, Departments Radiology and Medical Informatics, Erasmus Medical Center, Rotterdam, the Netherlands; The Image Section, Department Computer Science, University of Copenhagen, Copenhagen, Denmark.

出版信息

Med Image Anal. 2019 May;54:280-296. doi: 10.1016/j.media.2019.03.009. Epub 2019 Mar 29.

Abstract

Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.

摘要

机器学习(ML)算法在医学成像领域产生了巨大的影响。虽然医学成像数据集的规模一直在增长,但监督 ML 算法经常面临的一个挑战是缺乏标注数据。因此,已经提出了各种可以使用较少/其他类型的监督进行学习的方法。我们综述了医学成像中的半监督、多实例和迁移学习,包括诊断或分割任务。我们还讨论了这些学习场景之间的联系,以及未来研究的机会。通过 https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416 可以获得调查文献的详细信息数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验