Suppr超能文献

生成对抗网络和数据聚类在可爱无人机设计中的应用。

Generative Adversarial Networks and Data Clustering for Likable Drone Design.

机构信息

Magic Lab, Department of Industrial Engineering and Management, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.

出版信息

Sensors (Basel). 2022 Aug 26;22(17):6433. doi: 10.3390/s22176433.

Abstract

Novel applications for human-drone interaction demand new design approaches, such as social drones that need to be perceived as likable by users. However, given the complexity of the likability perception process, gathering such design information from the interaction context is intricate. This work leverages deep learning-based techniques to generate novel likable drone images. We collected a drone image database (N=360) applicable for design research and assessed the drone's likability ratings in a user study (N=379). We employed two clustering methodologies: 1. likability-based, which resulted in non-likable, neutral, and likable drone clusters; and 2. feature-based (VGG, PCA), which resulted in drone clusters characterized by visual similarity; both clustered using the K-means algorithm. A characterization process identified three drone features: colorfulness, animal-like representation, and emotional expressions through facial features, which affect drone likability, going beyond prior research. We used the likable drone cluster (N=122) for generating new images using StyleGAN2-ADA and addressed the dataset size limitation using specific configurations and transfer learning. Our results were mitigated due to the dataset size; thus, we illustrate the feasibility of our approach by generating new images using the original database. Our findings demonstrate the effectiveness of Generative Adversarial Networks (GANs) exploitation for drone design, and to the best of our knowledge, this work is the first to suggest GANs for such application.

摘要

人类与无人机互动的新应用需要新的设计方法,例如需要被用户认为是可爱的社交无人机。然而,考虑到可爱感感知过程的复杂性,从互动情境中收集此类设计信息是复杂的。这项工作利用基于深度学习的技术来生成新颖的可爱无人机图像。我们收集了一个适用于设计研究的无人机图像数据库(N=360),并在用户研究中评估了无人机的可爱度评分(N=379)。我们采用了两种聚类方法:1. 基于可爱度的聚类,得到不可爱、中性和可爱的无人机聚类;2. 基于特征的聚类(VGG、PCA),得到视觉相似的无人机聚类;两者都使用 K-means 算法聚类。特征识别过程确定了三个影响无人机可爱度的无人机特征:色彩丰富度、动物般的表现和通过面部特征表达的情感,超越了之前的研究。我们使用可爱的无人机聚类(N=122),使用 StyleGAN2-ADA 生成新图像,并通过特定配置和迁移学习解决数据集大小限制。由于数据集大小的限制,我们的结果受到了影响;因此,我们通过使用原始数据库生成新图像来说明我们方法的可行性。我们的研究结果表明了生成对抗网络(GANs)在无人机设计中的应用效果,据我们所知,这是首次提出将 GANs 应用于此类应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea96/9459981/7ecbf6adac96/sensors-22-06433-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验