Suppr超能文献

人工智能在脑膜炎鉴别诊断中的应用:一项全国性研究。

Artificial Intelligence in Differential Diagnostics of Meningitis: A Nationwide Study.

作者信息

Mentis Alexios-Fotios A, Garcia Irene, Jiménez Juan, Paparoupa Maria, Xirogianni Athanasia, Papandreou Anastasia, Tzanakaki Georgina

机构信息

National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 122 43 Athens, Greece.

Department of Mathematical Sciences and Informatics, and Health Research Institute (IdISBa), University of the Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain.

出版信息

Diagnostics (Basel). 2021 Mar 28;11(4):602. doi: 10.3390/diagnostics11040602.

Abstract

Differential diagnosis between bacterial and viral meningitis is crucial. In our study, to differentiate bacterial vs. viral meningitis, three machine learning (ML) algorithms (multiple logistic regression (MLR), random forest (RF), and naïve-Bayes (NB)) were applied for the two age groups (0-14 and >14 years) of patients with meningitis by both conventional (culture) and molecular (PCR) methods. Cerebrospinal fluid (CSF) neutrophils, CSF lymphocytes, neutrophil-to-lymphocyte ratio (NLR), blood albumin, blood C-reactive protein (CRP), glucose, blood soluble urokinase-type plasminogen activator receptor (suPAR), and CSF lymphocytes-to-blood CRP ratio (LCR) were used as predictors for the ML algorithms. The performance of the ML algorithms was evaluated through a cross-validation procedure, and optimal predictions of the type of meningitis were above 95% for viral and 78% for bacterial meningitis. Overall, MLR and RF yielded the best performance when using CSF neutrophils, CSF lymphocytes, NLR, albumin, glucose, gender, and CRP. Also, our results reconfirm the high diagnostic accuracy of NLR in the differential diagnosis between bacterial and viral meningitis.

摘要

鉴别细菌性脑膜炎和病毒性脑膜炎至关重要。在我们的研究中,为了区分细菌性脑膜炎和病毒性脑膜炎,通过传统(培养)和分子(PCR)方法,对两个年龄组(0 - 14岁和>14岁)的脑膜炎患者应用了三种机器学习(ML)算法(多元逻辑回归(MLR)、随机森林(RF)和朴素贝叶斯(NB))。脑脊液(CSF)中性粒细胞、CSF淋巴细胞、中性粒细胞与淋巴细胞比值(NLR)、血白蛋白、血C反应蛋白(CRP)、葡萄糖、血可溶性尿激酶型纤溶酶原激活剂受体(suPAR)以及CSF淋巴细胞与血CRP比值(LCR)被用作ML算法的预测指标。通过交叉验证程序评估ML算法的性能,对于病毒性脑膜炎,脑膜炎类型的最佳预测准确率高于95%,对于细菌性脑膜炎则为78%。总体而言,当使用CSF中性粒细胞、CSF淋巴细胞、NLR、白蛋白、葡萄糖、性别和CRP时,MLR和RF表现最佳。此外,我们的结果再次证实了NLR在细菌性脑膜炎和病毒性脑膜炎鉴别诊断中的高诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c7/8065596/7203f6b18a47/diagnostics-11-00602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验