Suppr超能文献

使用机器学习模型对非手术根管治疗预后的二次评估

Second Opinion for Non-Surgical Root Canal Treatment Prognosis Using Machine Learning Models.

作者信息

Bennasar Catalina, García Irene, Gonzalez-Cid Yolanda, Pérez Francesc, Jiménez Juan

机构信息

ADEMA, School of Dentistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain.

Department of Mathematical Sciences and Informatics, University of the Balearic Islands, 07120 Palma de Mallorca, Spain.

出版信息

Diagnostics (Basel). 2023 Aug 23;13(17):2742. doi: 10.3390/diagnostics13172742.

Abstract

Although the association between risk factors and non-surgical root canal treatment (NSRCT) failure has been extensively studied, methods to predict the outcomes of NSRCT are in an early stage, and dentists currently make the treatment prognosis based mainly on their clinical experience. Since this involves different sources of error, we investigated the use of machine learning (ML) models as a second opinion to support the clinical decision on whether to perform NSRCT. We undertook a retrospective study of 119 confirmed and not previously treated Apical Periodontitis cases that received the same treatment by the same specialist. For each patient, we recorded the variables from a newly proposed data collection template and defined a binary outcome: Success if the lesion clears and failure otherwise. We conducted tests for detecting the association between the variables and the outcome and selected a set of variables as the initial inputs into four ML algorithms: Logistic Regression (LR), Random Forest (RF), Naive-Bayes (NB), and K Nearest Neighbors (KNN). According to our results, RF and KNN significantly improve (-values < 0.05) the sensitivity and accuracy of the dentist's treatment prognosis. Taking our results as a proof of concept, we conclude that future randomized clinical trials are worth designing to test the clinical utility of ML models as a second opinion for NSRCT prognosis.

摘要

尽管风险因素与非手术根管治疗(NSRCT)失败之间的关联已得到广泛研究,但预测NSRCT结果的方法尚处于早期阶段,目前牙医主要根据临床经验做出治疗预后判断。由于这涉及不同的误差来源,我们研究了使用机器学习(ML)模型作为第二种意见,以支持关于是否进行NSRCT的临床决策。我们对119例确诊且此前未接受过治疗的根尖周炎病例进行了回顾性研究,这些病例由同一位专家进行相同的治疗。对于每位患者,我们从新提出的数据收集模板中记录变量,并定义了一个二元结果:如果病变清除则为成功,否则为失败。我们进行了检测变量与结果之间关联的测试,并选择了一组变量作为四种ML算法的初始输入:逻辑回归(LR)、随机森林(RF)、朴素贝叶斯(NB)和K近邻(KNN)。根据我们的结果,RF和KNN显著提高(p值<0.05)了牙医治疗预后的敏感性和准确性。以我们的结果作为概念验证,我们得出结论,未来值得设计随机临床试验来测试ML模型作为NSRCT预后第二种意见的临床效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de33/10487079/86652d28f51e/diagnostics-13-02742-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验