Suppr超能文献

基于区域卷积神经网络的牙科根尖片种植体周围骨丢失测量

Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs.

作者信息

Cha Jun-Young, Yoon Hyung-In, Yeo In-Sung, Huh Kyung-Hoe, Han Jung-Suk

机构信息

Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Daehak-ro 101, Jongro-gu, Seoul 03080, Korea.

Department of Oral and Maxillofacial Radiology, School of Dentistry and Dental Research Institute, Seoul National University, Daehak-ro 101, Jongro-gu, Seoul 03080, Korea.

出版信息

J Clin Med. 2021 Mar 2;10(5):1009. doi: 10.3390/jcm10051009.

Abstract

Determining the peri-implant marginal bone level on radiographs is challenging because the boundaries of the bones around implants are often unclear or the heights of the buccal and lingual bone levels are different. Therefore, a deep convolutional neural network (CNN) was evaluated for detecting the marginal bone level, top, and apex of implants on dental periapical radiographs. An automated assistant system was proposed for calculating the bone loss percentage and classifying the bone resorption severity. A modified region-based CNN (R-CNN) was trained using transfer learning based on Microsoft Common Objects in Context dataset. Overall, 708 periapical radiographic images were divided into training ( = 508), validation ( = 100), and test ( = 100) datasets. The training dataset was randomly enriched by data augmentation. For evaluation, average precision, average recall, and mean object keypoint similarity (OKS) were calculated, and the mean OKS values of the model and a dental clinician were compared. Using detected keypoints, radiographic bone loss was measured and classified. No statistically significant difference was found between the modified R-CNN model and dental clinician for detecting landmarks around dental implants. The modified R-CNN model can be utilized to measure the radiographic peri-implant bone loss ratio to assess the severity of peri-implantitis.

摘要

在X光片上确定种植体周围边缘骨水平具有挑战性,因为种植体周围骨骼的边界通常不清晰,或者颊侧和舌侧骨水平的高度不同。因此,评估了一种深度卷积神经网络(CNN),用于在牙科根尖片上检测种植体的边缘骨水平、顶部和根尖。提出了一种自动辅助系统,用于计算骨丢失百分比并对骨吸收严重程度进行分类。基于微软通用上下文对象数据集,使用迁移学习训练了一种改进的基于区域的CNN(R-CNN)。总体而言,708张根尖片图像被分为训练集(=508)、验证集(=100)和测试集(=100)。通过数据增强对训练数据集进行随机扩充。为了进行评估,计算了平均精度、平均召回率和平均目标关键点相似度(OKS),并比较了模型和牙科临床医生的平均OKS值。使用检测到的关键点,测量并分类影像学骨丢失。在检测牙种植体周围标志点方面,改进的R-CNN模型与牙科临床医生之间未发现统计学上的显著差异。改进的R-CNN模型可用于测量影像学种植体周围骨丢失率,以评估种植体周围炎的严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/078e/7958615/02765302afc0/jcm-10-01009-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验