Medical Informatics for Translational Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Applied Medical Informatics, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
Int J Mol Sci. 2021 Mar 10;22(6):2822. doi: 10.3390/ijms22062822.
Recent advances in sequencing and biotechnological methodologies have led to the generation of large volumes of molecular data of different omics layers, such as genomics, transcriptomics, proteomics and metabolomics. Integration of these data with clinical information provides new opportunities to discover how perturbations in biological processes lead to disease. Using data-driven approaches for the integration and interpretation of multi-omics data could stably identify links between structural and functional information and propose causal molecular networks with potential impact on cancer pathophysiology. This knowledge can then be used to improve disease diagnosis, prognosis, prevention, and therapy. This review will summarize and categorize the most current computational methodologies and tools for integration of distinct molecular layers in the context of translational cancer research and personalized therapy. Additionally, the bioinformatics tools Multi-Omics Factor Analysis (MOFA) and netDX will be tested using omics data from public cancer resources, to assess their overall robustness, provide reproducible workflows for gaining biological knowledge from multi-omics data, and to comprehensively understand the significantly perturbed biological entities in distinct cancer types. We show that the performed supervised and unsupervised analyses result in meaningful and novel findings.
近年来,测序和生物技术方法的进步带来了大量不同组学层面的分子数据,如基因组学、转录组学、蛋白质组学和代谢组学。将这些数据与临床信息相结合,为发现生物过程中的干扰如何导致疾病提供了新的机会。使用数据驱动的方法来整合和解释多组学数据,可以稳定地识别结构和功能信息之间的联系,并提出潜在影响癌症病理生理学的因果分子网络。然后,这些知识可用于改善疾病的诊断、预后、预防和治疗。
本文将总结和分类目前最先进的计算方法和工具,用于整合转化癌症研究和个性化治疗中不同的分子层面。此外,还将使用公共癌症资源中的组学数据来测试生物信息学工具 Multi-Omics Factor Analysis (MOFA) 和 netDX,以评估它们的整体稳健性,为从多组学数据中获得生物学知识提供可重复的工作流程,并全面了解不同癌症类型中显著失调的生物学实体。我们表明,进行的有监督和无监督分析产生了有意义和新颖的发现。