Suppr超能文献

多组学在生物医学研究中的整合——以代谢组学为中心的综述。

Multi-omics integration in biomedical research - A metabolomics-centric review.

机构信息

Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.

出版信息

Anal Chim Acta. 2021 Jan 2;1141:144-162. doi: 10.1016/j.aca.2020.10.038. Epub 2020 Oct 22.

Abstract

Recent advances in high-throughput technologies have enabled the profiling of multiple layers of a biological system, including DNA sequence data (genomics), RNA expression levels (transcriptomics), and metabolite levels (metabolomics). This has led to the generation of vast amounts of biological data that can be integrated in so-called multi-omics studies to examine the complex molecular underpinnings of health and disease. Integrative analysis of such datasets is not straightforward and is particularly complicated by the high dimensionality and heterogeneity of the data and by the lack of universal analysis protocols. Previous reviews have discussed various strategies to address the challenges of data integration, elaborating on specific aspects, such as network inference or feature selection techniques. Thereby, the main focus has been on the integration of two omics layers in their relation to a phenotype of interest. In this review we provide an overview over a typical multi-omics workflow, focusing on integration methods that have the potential to combine metabolomics data with two or more omics. We discuss multiple integration concepts including data-driven, knowledge-based, simultaneous and step-wise approaches. We highlight the application of these methods in recent multi-omics studies, including large-scale integration efforts aiming at a global depiction of the complex relationships within and between different biological layers without focusing on a particular phenotype.

摘要

近年来,高通量技术的进步使得对生物系统的多个层次进行分析成为可能,包括 DNA 序列数据(基因组学)、RNA 表达水平(转录组学)和代谢物水平(代谢组学)。这导致了大量生物数据的产生,可以在所谓的多组学研究中进行整合,以研究健康和疾病的复杂分子基础。这种数据集的综合分析并不简单,特别是由于数据的高维性和异质性以及缺乏通用的分析协议而变得更加复杂。以前的综述讨论了各种策略来解决数据集成的挑战,详细阐述了特定方面,如网络推断或特征选择技术。因此,主要重点是将两个组学层与其感兴趣的表型相关联进行整合。在这篇综述中,我们提供了一个典型的多组学工作流程概述,重点介绍了有可能将代谢组学数据与两个或更多组学相结合的集成方法。我们讨论了多种集成概念,包括数据驱动、基于知识、同时和逐步的方法。我们强调了这些方法在最近的多组学研究中的应用,包括旨在全面描述不同生物层内部和之间复杂关系的大型整合工作,而不关注特定的表型。

相似文献

引用本文的文献

10
Implications of Extra-column Effects for Targeted or Untargeted Microflow LC-MS.柱外效应在靶向或非靶向微流液相色谱-质谱中的影响
ACS Meas Sci Au. 2025 Apr 8;5(3):332-344. doi: 10.1021/acsmeasuresciau.5c00015. eCollection 2025 Jun 18.

本文引用的文献

1
Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence.人工智能时代的空间代谢组学与成像质谱分析
Annu Rev Biomed Data Sci. 2020 Jul;3:61-87. doi: 10.1146/annurev-biodatasci-011420-031537. Epub 2020 Apr 13.
3
The structure and dynamics of multilayer networks.多层网络的结构与动态特性
Phys Rep. 2014 Nov 1;544(1):1-122. doi: 10.1016/j.physrep.2014.07.001. Epub 2014 Jul 10.
8
Metabolism in the tumor microenvironment: insights from single-cell analysis.肿瘤微环境中的代谢:单细胞分析的见解
Oncoimmunology. 2020 Feb 9;9(1):1726556. doi: 10.1080/2162402X.2020.1726556. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验