Reyez-Araiza José Luis, Pineda-Piñón Jorge, López-Romero José M, Gasca-Tirado José Ramón, Arroyo Contreras Moises, Jáuregui Correa Juan Carlos, Apátiga-Castro Luis Miguel, Rivera-Muñoz Eric Mauricio, Velazquez-Castillo Rodrigo Rafael, Pérez Bueno José de Jesús, Manzano-Ramirez Alejandro
División de Investigación y Posgrado, Facultad de Ingeniería, C. U. Cerro de las Campanas, Centro, Universidad Autónoma de Querétaro, Querétaro 76010, Qro., Mexico.
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Unidad Querétaro, Cerro Blanco No. 141, Colinas del Cimatario, Querétaro 76090, Qro., Mexico.
Materials (Basel). 2021 Mar 15;14(6):1420. doi: 10.3390/ma14061420.
The energy sector is one of the fields of interest for different nations around the world. Due to the current fossil fuel crisis, the scientific community develops new energy-saving experiences to address this concern. Buildings are one of the elements of higher energy consumption, so the generation of knowledge and technological development may offer solutions to this energy demand, which are more than welcome. Phase change materials (PCMs) included in building elements such as wall panels, blocks, panels or coatings, for heating and cooling applications have been shown, when heating, to increase the heat storage capacity by absorbing heat as latent heat. Therefore, the use of latent heat storage systems using phase change materials (PCMs) has been investigated within the last two decades. In the present review, the macro and micro encapsulation methods for construction materials are reviewed, the former being the most viable method of inclusion of PCMs in construction elements. In addition, based on the analysis of the existing papers on the encapsulation process of PCMs, the importance to pay more attention to the bio-based PCMs is shown, since more research is needed to process such PCMs. To determine its thermophysical and mechanical behavior at the micro and macro levels, in order to see the feasibility of substituting petroleum-based PCMs with a more environmentally friendly bio-based one, a section devoted to the excellent PCM with lightweight aggregate (PCM-LWA concrete) is presented due to the lack of description given in other reviews.
能源领域是世界各国关注的领域之一。由于当前的化石燃料危机,科学界正在开发新的节能经验以应对这一问题。建筑是能源消耗较高的元素之一,因此知识的产生和技术的发展可能为这种能源需求提供解决方案,这是非常受欢迎的。已表明,包含在墙板、砌块、面板或涂层等建筑元素中的用于加热和冷却应用的相变材料(PCM),在加热时通过吸收潜热来增加蓄热能力。因此,在过去二十年中对使用相变材料(PCM)的潜热存储系统进行了研究。在本综述中,对建筑材料的宏观和微观封装方法进行了综述,前者是将相变材料纳入建筑元素的最可行方法。此外,基于对现有关于相变材料封装过程的论文的分析,表明了更加关注生物基相变材料的重要性,因为处理此类相变材料需要更多的研究。为了确定其在微观和宏观层面的热物理和力学行为,以便了解用更环保的生物基相变材料替代石油基相变材料的可行性,由于其他综述中缺乏相关描述,因此专门介绍了具有轻质骨料的优质相变材料(PCM-LWA混凝土)这一部分。