Suppr超能文献

利用铂纳米颗粒模拟基于SiO的导电桥接存储器的人工突触可塑性特征。

Emulating Artificial Synaptic Plasticity Characteristics from SiO-Based Conductive Bridge Memories with Pt Nanoparticles.

作者信息

Bousoulas Panagiotis, Papakonstantinopoulos Charalampos, Kitsios Stavros, Moustakas Konstantinos, Sirakoulis Georgios Ch, Tsoukalas Dimitris

机构信息

Department of Applied Physics, National Technical University of Athens, Iroon Polytechniou 9 Zografou, 15780 Athens, Greece.

Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.

出版信息

Micromachines (Basel). 2021 Mar 15;12(3):306. doi: 10.3390/mi12030306.

Abstract

The quick growth of information technology has necessitated the need for developing novel electronic devices capable of performing novel neuromorphic computations with low power consumption and a high degree of accuracy. In order to achieve this goal, it is of vital importance to devise artificial neural networks with inherent capabilities of emulating various synaptic properties that play a key role in the learning procedures. Along these lines, we report here the direct impact of a dense layer of Pt nanoparticles that plays the role of the bottom electrode, on the manifestation of the bipolar switching effect within SiO-based conductive bridge memories. Valuable insights regarding the influence of the thermal conductivity value of the bottom electrode on the conducting filament growth mechanism are provided through the application of a numerical model. The implementation of an intermediate switching transition slope during the SET transition permits the emulation of various artificial synaptic functionalities, such as short-term plasticity, including paired-pulsed facilitation and paired-pulse depression, long-term plasticity and four different types of spike-dependent plasticity. Our approach provides valuable insights toward the development of multifunctional synaptic elements that operate with low power consumption and exhibit biological-like behavior.

摘要

信息技术的快速发展使得有必要开发新型电子设备,这些设备能够以低功耗和高精度执行新型神经形态计算。为了实现这一目标,设计具有模拟各种突触特性固有能力的人工神经网络至关重要,这些突触特性在学习过程中起着关键作用。沿着这些思路,我们在此报告了作为底部电极的致密铂纳米颗粒层对基于SiO的导电桥忆阻器中双极开关效应表现的直接影响。通过应用数值模型,提供了关于底部电极热导率值对导电细丝生长机制影响的宝贵见解。在SET转变期间实现中间开关转变斜率允许模拟各种人工突触功能,如短期可塑性,包括双脉冲易化和双脉冲抑制、长期可塑性以及四种不同类型的脉冲依赖可塑性。我们的方法为开发低功耗运行并表现出类似生物行为的多功能突触元件提供了宝贵见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8965/7999862/34eff85839b6/micromachines-12-00306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验