Suppr超能文献

ACE:用于实时任意方向目标检测的无锚点角点演化

ACE: Anchor-Free Corner Evolution for Real-Time Arbitrarily-Oriented Object Detection.

作者信息

Dai Pengwen, Yao Siyuan, Li Zekun, Zhang Sanyi, Cao Xiaochun

出版信息

IEEE Trans Image Process. 2022;31:4076-4089. doi: 10.1109/TIP.2022.3167919. Epub 2022 Jun 17.

Abstract

Objects with different orientations are ubiquitous in the real world (e.g., texts/hands in the scene image, objects in the aerial image, etc.), and the widely-used axis-aligned bounding box does not compactly enclose the oriented objects. Thus arbitrarily-oriented object detection has attracted rising attention in recent years. In this paper, we propose a novel and effective model to detect arbitrarily-oriented objects. Instead of directly predicting the angles of oriented bounding boxes like most existing methods, we evolve the axis-aligned bounding box to the oriented quadrilateral box with the assistance of dynamically gathering contour information. More specifically, we first obtain the axis-aligned bounding box in an anchor-free manner. After that, we set the key points based on the sampled contour points of the axis-aligned bounding box. To improve the localization performance, we enrich the feature representations of these key points by exploiting a dynamic information gathering mechanism. This technique propagates the geometrical and semantic information along the sampled contour points, and fuses the information from the semantic neighbors of each sampled point, which varies for different locations. Finally, we estimate the offsets between the axis-aligned bounding box key points and the oriented quadrilateral box corner points. Extensive experiments on two frequently-used aerial image benchmarks HRSC2016 and DOTA, as well as scene text/hand datasets ICDAR2015, TD500, and Oxford-Hand, demonstrate the effectiveness and advantage of our proposed model.

摘要

在现实世界中,具有不同方向的物体无处不在(例如,场景图像中的文本/手部、航空图像中的物体等),而广泛使用的轴对齐边界框并不能紧凑地包围有方向的物体。因此,任意方向物体检测近年来受到了越来越多的关注。在本文中,我们提出了一种新颖且有效的模型来检测任意方向的物体。与大多数现有方法不同,我们不是直接预测有方向边界框的角度,而是借助动态收集轮廓信息将轴对齐边界框演化为有方向的四边形框。具体来说,我们首先以无锚点的方式获得轴对齐边界框。之后,我们基于轴对齐边界框的采样轮廓点设置关键点。为了提高定位性能,我们通过利用动态信息收集机制丰富这些关键点的特征表示。该技术沿着采样轮廓点传播几何和语义信息,并融合来自每个采样点语义邻居的信息,这些信息因不同位置而有所不同。最后,我们估计轴对齐边界框关键点与有方向四边形框角点之间的偏移量。在两个常用的航空图像基准数据集HRSC2016和DOTA以及场景文本/手部数据集ICDAR2015、TD500和Oxford-Hand上进行的大量实验证明了我们提出的模型的有效性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验