KU Leuven, e-Media Research Lab, 3000 Leuven, Belgium.
KU Leuven, Stadius, Department of Electrical Engineering, 3001 Leuven, Belgium.
Sensors (Basel). 2021 Mar 20;21(6):2176. doi: 10.3390/s21062176.
This article provides a systematic review of studies on recognising bathroom activities in older adults using wearable sensors. Bathroom activities are an important part of Activities of Daily Living (ADL). The performance on ADL activities is used to predict the ability of older adults to live independently. This paper aims to provide an overview of the studied bathroom activities, the wearable sensors used, different applied methodologies and the tested activity recognition techniques. Six databases were screened up to March 2020, based on four categories of keywords: older adults, activity recognition, bathroom activities and wearable sensors. In total, 4262 unique papers were found, of which only seven met the inclusion criteria. This small number shows that few studies have been conducted in this field. Therefore, in addition, this critical review resulted in several recommendations for future studies. In particular, we recommend to (1) study complex bathroom activities, including multiple movements; (2) recruit participants, especially the target population; (3) conduct both lab and real-life experiments; (4) investigate the optimal number and positions of wearable sensors; (5) choose a suitable annotation method; (6) investigate deep learning models; (7) evaluate the generality of classifiers; and (8) investigate both detection and quality performance of an activity.
本文对使用可穿戴传感器识别老年人浴室活动的研究进行了系统回顾。浴室活动是日常生活活动(ADL)的重要组成部分。ADL 活动的表现用于预测老年人独立生活的能力。本文旨在概述所研究的浴室活动、使用的可穿戴传感器、不同的应用方法以及经过测试的活动识别技术。从 2020 年 3 月开始,根据老年人、活动识别、浴室活动和可穿戴传感器这四个类别的关键字,对六个数据库进行了筛选。总共发现了 4262 篇独特的论文,其中只有 7 篇符合纳入标准。这个小数字表明,该领域的研究很少。因此,除了这篇批判性综述之外,我们还为未来的研究提出了一些建议。特别是,我们建议:(1)研究复杂的浴室活动,包括多个动作;(2)招募参与者,特别是目标人群;(3)进行实验室和现实生活实验;(4)研究可穿戴传感器的最佳数量和位置;(5)选择合适的注释方法;(6)研究深度学习模型;(7)评估分类器的通用性;以及(8)研究活动的检测和质量性能。