Suppr超能文献

在哺乳动物细胞中同源定向修复的起源。

On the Origins of Homology Directed Repair in Mammalian Cells.

机构信息

Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, Newark, DE 19713, USA.

出版信息

Int J Mol Sci. 2021 Mar 25;22(7):3348. doi: 10.3390/ijms22073348.

Abstract

Over the course of the last five years, expectations surrounding our capacity to selectively modify the human genome have never been higher. The reduction to practice site-specific nucleases designed to cleave at a unique site within the DNA is now centerstage in the development of effective molecular therapies. Once viewed as being impossible, this technology now has great potential and, while cellular and molecular barriers persist to clinical implementations, there is little doubt that these barriers will be crossed, and human beings will soon be treated with gene editing tools. The most ambitious of these desires is the correction of genetic mutations resident within the human genome that are responsible for oncogenesis and a wide range of inherited diseases. The process by which gene editing activity could act to reverse these mutations to wild-type and restore normal protein function has been generally categorized as homology directed repair. This is a catch-all basket term that includes the insertion of short fragments of DNA, the replacement of long fragments of DNA, and the surgical exchange of single bases in the correction of point mutations. The foundation of homology directed repair lies in pioneering work that unravel the mystery surrounding genetic exchange using single-stranded DNA oligonucleotides as the sole gene editing agent. Single agent gene editing has provided guidance on how to build combinatorial approaches to human gene editing using the remarkable programmable nuclease complexes known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their closely associated (Cas) nucleases. In this manuscript, we outline the historical pathway that has helped evolve the current molecular toolbox being utilized for the genetic re-engineering of the human genome.

摘要

在过去的五年中,人们对我们选择性修饰人类基因组的能力的期望从未如此之高。现在,用于在 DNA 中的独特位点切割的定点核酸酶的实际应用已经成为有效分子疗法发展的中心。曾经被认为是不可能的,这项技术现在具有巨大的潜力,尽管细胞和分子障碍仍然存在于临床实施中,但毫无疑问,这些障碍将被克服,人类很快将接受基因编辑工具的治疗。其中最雄心勃勃的愿望是纠正导致肿瘤发生和广泛遗传疾病的人类基因组中存在的遗传突变。基因编辑活性可以逆转这些突变并恢复正常蛋白功能的过程通常被归类为同源定向修复。这是一个包罗万象的术语,包括插入短的 DNA 片段、替换长的 DNA 片段以及通过单点突变校正来交换单个碱基。同源定向修复的基础在于开创性的工作,该工作揭示了使用单链 DNA 寡核苷酸作为唯一基因编辑剂进行遗传交换的奥秘。单一基因编辑为使用称为簇状规则间隔短回文重复序列 (CRISPR) 的可编程核酸酶复合物及其密切相关的 (Cas) 核酸酶构建人类基因编辑的组合方法提供了指导。在本文中,我们概述了帮助进化当前用于人类基因组遗传工程的分子工具箱的历史途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c288/8037881/88b3f467e7e5/ijms-22-03348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验