Suppr超能文献

使用高光谱遥感、综合原位传感和机器学习的机器人团队自主学习新环境。

Autonomous Learning of New Environments with a Robotic Team Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ Sensing and Machine Learning.

机构信息

Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.

出版信息

Sensors (Basel). 2021 Mar 23;21(6):2240. doi: 10.3390/s21062240.

Abstract

This paper describes and demonstrates an autonomous robotic team that can rapidly learn the characteristics of environments that it has never seen before. The flexible paradigm is easily scalable to multi-robot, multi-sensor autonomous teams, and it is relevant to satellite calibration/validation and the creation of new remote sensing data products. A case study is described for the rapid characterisation of the aquatic environment, over a period of just a few minutes we acquired thousands of training data points. This training data allowed for our machine learning algorithms to rapidly learn by example and provide wide area maps of the composition of the environment. Along side these larger autonomous robots two smaller robots that can be deployed by a single individual were also deployed (a walking robot and a robotic hover-board), observing significant small scale spatial variability.

摘要

本文描述并演示了一个自主机器人团队,该团队可以快速学习其从未见过的环境特征。这种灵活的范例很容易扩展到多机器人、多传感器自主团队,并且与卫星校准/验证和新遥感数据产品的创建相关。本文描述了一个快速描述水生环境特征的案例研究,仅在几分钟内我们就采集了数千个训练数据点。这些训练数据使我们的机器学习算法能够快速通过示例进行学习,并提供环境组成的大面积地图。除了这些较大的自主机器人之外,还部署了两个可以由单个个体部署的较小机器人(一个步行机器人和一个机器人 hover-board),观察到显著的小尺度空间变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17e7/8004590/178fa656b52d/sensors-21-02240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验