Suppr超能文献

多模态 U-Net:基于多感觉场和注意力机制的残差模块优化的高分辨率图像语义分割 U-Net。

Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation.

机构信息

Key Laboratory of Smart City and Environment Modeling of Autonomous Region Universities, College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China.

Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China.

出版信息

Sensors (Basel). 2021 Mar 5;21(5):1794. doi: 10.3390/s21051794.

Abstract

As the acquisition of very high resolution (VHR) images becomes easier, the complex characteristics of VHR images pose new challenges to traditional machine learning semantic segmentation methods. As an excellent convolutional neural network (CNN) structure, U-Net does not require manual intervention, and its high-precision features are widely used in image interpretation. However, as an end-to-end fully convolutional network, U-Net has not explored enough information from the full scale, and there is still room for improvement. In this study, we constructed an effective network module: residual module under a multisensory field (RMMF) to extract multiscale features of target and an attention mechanism to optimize feature information. RMMF uses parallel convolutional layers to learn features of different scales in the network and adds shortcut connections between stacked layers to construct residual blocks, combining low-level detailed information with high-level semantic information. RMMF is universal and extensible. The convolutional layer in the U-Net network is replaced with RMMF to improve the network structure. Additionally, the multiscale convolutional network was tested using RMMF on the Gaofen-2 data set and Potsdam data sets. Experiments show that compared to other technologies, this method has better performance in airborne and spaceborne images.

摘要

随着高分辨率 (VHR) 图像的获取变得更加容易,VHR 图像的复杂特征给传统的机器学习语义分割方法带来了新的挑战。作为一种优秀的卷积神经网络 (CNN) 结构,U-Net 不需要人工干预,其高精度的特征被广泛应用于图像解释。然而,作为一个端到端的全卷积网络,U-Net 并没有从全尺度上充分探索信息,还有改进的空间。在这项研究中,我们构建了一个有效的网络模块:多感官域下的残差模块(RMMF),用于提取目标的多尺度特征和注意力机制,以优化特征信息。RMMF 使用并行卷积层在网络中学习不同尺度的特征,并在堆叠层之间添加快捷连接来构建残差块,将底层的详细信息与高层的语义信息结合起来。RMMF 具有通用性和可扩展性。U-Net 网络中的卷积层被 RMMF 替换,以改进网络结构。此外,我们还使用 RMMF 在高分二号数据集和波茨坦数据集上进行了多尺度卷积网络测试。实验表明,与其他技术相比,该方法在航空和航天图像中具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf57/7961556/04ed5f2f6d30/sensors-21-01794-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验