Veronese Federica, Branciforti Francesco, Zavattaro Elisa, Tarantino Vanessa, Romano Valentina, Meiburger Kristen M, Salvi Massimo, Seoni Silvia, Savoia Paola
AOU Maggiore della Carità, C.so Mazzini 18, 28100 Novara, Italy.
Biolab, PolitoBIOmedLab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy.
Diagnostics (Basel). 2021 Mar 5;11(3):451. doi: 10.3390/diagnostics11030451.
The use of teledermatology has spread over the last years, especially during the recent SARS-Cov-2 pandemic. Teledermoscopy, an extension of teledermatology, consists of consulting dermoscopic images, also transmitted through smartphones, to remotely diagnose skin tumors or other dermatological diseases. The purpose of this work was to verify the diagnostic validity of images acquired with an inexpensive smartphone microscope (Nurugo), employing convolutional neural networks (CNN) to classify malignant melanoma (MM), melanocytic nevus (MN), and seborrheic keratosis (SK).
The CNN, trained with 600 dermatoscopic images from the ISIC (International Skin Imaging Collaboration) archive, was tested on three test sets: ISIC images, images acquired with the Nurugo, and images acquired with a conventional dermatoscope.
The results obtained, although with some limitations due to the smartphone device and small data set, were encouraging, showing comparable results to the clinical dermatoscope and up to 80% accuracy (out of 10 images, two were misclassified) using the Nurugo demonstrating how an amateur device can be used with reasonable levels of diagnostic accuracy.
Considering the low cost and the ease of use, the Nurugo device could be a useful tool for general practitioners (GPs) to perform the first triage of skin lesions, aiding the selection of lesions that require a face-to-face consultation with dermatologists.
在过去几年中,远程皮肤病学的应用不断普及,尤其是在最近的新冠疫情期间。远程皮肤镜检查作为远程皮肤病学的延伸,包括通过智能手机传输的皮肤镜图像进行会诊,以远程诊断皮肤肿瘤或其他皮肤病。这项工作的目的是验证使用廉价智能手机显微镜(Nurugo)获取的图像的诊断有效性,利用卷积神经网络(CNN)对恶性黑色素瘤(MM)、黑素细胞痣(MN)和脂溢性角化病(SK)进行分类。
用来自国际皮肤成像协作组织(ISIC)档案库的600张皮肤镜图像训练的CNN,在三个测试集上进行测试:ISIC图像、用Nurugo获取的图像以及用传统皮肤镜获取的图像。
尽管由于智能手机设备和数据集较小存在一些局限性,但所获得的结果令人鼓舞,显示出与临床皮肤镜相当的结果,并且使用Nurugo时准确率高达80%(10张图像中有两张被误分类),这表明业余设备也能以合理的诊断准确率使用。
考虑到成本低且使用方便,Nurugo设备可能是全科医生对皮肤病变进行初步分诊的有用工具,有助于选择需要与皮肤科医生进行面对面会诊的病变。