Suppr超能文献

日本皮肤科医生对不同来源患者的皮肤肿瘤进行皮肤镜诊断的表现存在差异:深度学习卷积神经网络缩小了差距。

Dermoscopic diagnostic performance of Japanese dermatologists for skin tumors differs by patient origin: A deep learning convolutional neural network closes the gap.

作者信息

Minagawa Akane, Koga Hiroshi, Sano Tasuku, Matsunaga Kazuhisa, Teshima Yoshihiro, Hamada Akira, Houjou Yoshiharu, Okuyama Ryuhei

机构信息

Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan.

Casio Computer Co., Ltd, Tokyo, Japan.

出版信息

J Dermatol. 2021 Feb;48(2):232-236. doi: 10.1111/1346-8138.15640. Epub 2020 Oct 15.

Abstract

In the dermoscopic diagnosis of skin tumors, it remains unclear whether a deep neural network (DNN) trained with images from fair-skinned-predominant archives is helpful when applied for patients with darker skin. This study compared the performance of 30 Japanese dermatologists with that of a DNN for the dermoscopic diagnosis of International Skin Imaging Collaboration (ISIC) and Shinshu (Japanese only) datasets to classify malignant melanoma, melanocytic nevus, basal cell carcinoma and benign keratosis on the non-volar skin. The DNN was trained using 12 254 images from the ISIC set and 594 images from the Shinshu set. The sensitivity for malignancy prediction by the dermatologists was significantly higher for the Shinshu set than for the ISIC set (0.853 [95% confidence interval, 0.820-0.885] vs 0.608 [0.553-0.664], P < 0.001). The specificity of the DNN at the dermatologists' mean sensitivity value was 0.962 for the Shinshu set and 1.00 for the ISIC set and significantly higher than that for the human readers (both P < 0.001). The dermoscopic diagnostic performance of dermatologists for skin tumors tended to be less accurate for patients of non-local populations, particularly in relation to the dominant skin type. A DNN may help close this gap in the clinical setting.

摘要

在皮肤肿瘤的皮肤镜诊断中,使用以白皮肤为主的档案图像训练的深度神经网络(DNN)应用于肤色较深的患者时是否有帮助仍不清楚。本研究比较了30名日本皮肤科医生与一个DNN对国际皮肤影像协作组织(ISIC)数据集和信州(仅限日本)数据集进行皮肤镜诊断的性能,以对非掌侧皮肤的恶性黑色素瘤、黑素细胞痣、基底细胞癌和良性角化病进行分类。该DNN使用来自ISIC数据集的12254张图像和来自信州数据集的594张图像进行训练。皮肤科医生对信州数据集的恶性预测敏感性显著高于ISIC数据集(0.853[95%置信区间,0.820 - 0.88]对0.608[0.553 - 0.664],P < 0.001)。在皮肤科医生的平均敏感性值下,DNN对信州数据集的特异性为0.962,对ISIC数据集为1.00,且显著高于人类读者(P均< 0.001)。皮肤科医生对皮肤肿瘤的皮肤镜诊断性能对于非本地人群的患者往往不太准确,尤其是与主要皮肤类型相关时。在临床环境中,DNN可能有助于缩小这一差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验