Dalbanjan Nagarjuna Prakash, Praveen Kumar S K
Protein Biology Lab, Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580003 India.
Indian J Microbiol. 2024 Sep;64(3):879-893. doi: 10.1007/s12088-024-01355-x. Epub 2024 Jul 22.
Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR.
The online version contains supplementary material available at 10.1007/s12088-024-01355-x.
抗菌药物耐药性(AMR)对全球健康构成了首要威胁,因此需要创新策略来发现抗菌药物。本综述探讨了相关技术在鉴定新型抗菌药物和对抗AMR方面的作用及最新进展,并简要介绍了近期AMR的案例研究。对同源建模、虚拟筛选、分子对接、药效团建模、分子动力学模拟、密度泛函理论、集成机器学习和人工智能等技术在发现抗菌药物方面的实用性进行了系统综述。这些计算方法能够快速筛选大型化合物库、预测药物-靶点相互作用并优化候选药物。本综述讨论了将相关方法与传统实验方法相结合,并强调了它们在加速新型抗菌药物发现方面的潜力。此外,还强调了跨学科合作和数据共享计划在推进抗菌研究中的重要性。通过全面讨论相关技术的最新进展,本综述为抗菌研究的未来以及对抗AMR提供了有价值的见解。
在线版本包含可在10.1007/s12088-024-01355-x获取的补充材料。