Suppr超能文献

基于图的多层 K-Means++(G-MLKM)在约束空间中的感觉模式分析。

Graph Based Multi-Layer K-Means++ (G-MLKM) for Sensory Pattern Analysis in Constrained Spaces.

机构信息

Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.

EnviroCal Inc., Houston, TX 77084, USA.

出版信息

Sensors (Basel). 2021 Mar 16;21(6):2069. doi: 10.3390/s21062069.

Abstract

In this paper, we focus on developing a novel unsupervised machine learning algorithm, named graph based multi-layer k-means++ (G-MLKM), to solve the data-target association problem when targets move on a constrained space and minimal information of the targets can be obtained by sensors. Instead of employing the traditional data-target association methods that are based on statistical probabilities, the G-MLKM solves the problem via data clustering. We first develop the multi-layer k-means++ (MLKM) method for data-target association at a local space given a simplified constrained space situation. Then a p-dual graph is proposed to represent the general constrained space when local spaces are interconnected. Based on the p-dual graph and graph theory, we then generalize MLKM to G-MLKM by first understanding local data-target association, extracting cross-local data-target association mathematically, and then analyzing the data association at intersections of that space. To exclude potential data-target association errors that disobey physical rules, we also develop error correction mechanisms to further improve the accuracy. Numerous simulation examples are conducted to demonstrate the performance of G-MLKM, which yields an average data-target association accuracy of 92.2%.

摘要

在本文中,我们专注于开发一种新颖的无监督机器学习算法,名为基于图的多层 K-means++(G-MLKM),以解决当目标在受限空间中移动且传感器只能获取目标的最小信息时的数据-目标关联问题。与基于统计概率的传统数据-目标关联方法不同,G-MLKM 通过数据聚类来解决问题。我们首先为简化的受限空间情况开发了用于局部空间的数据-目标关联的多层 K-means++(MLKM)方法。然后,提出了一个 p-对偶图来表示局部空间相互连接时的通用受限空间。基于 p-对偶图和图论,我们通过首先理解局部数据-目标关联,从数学上提取跨局部数据-目标关联,然后分析该空间交点处的数据关联,将 MLKM 推广到 G-MLKM。为了排除违反物理规则的潜在数据-目标关联错误,我们还开发了错误校正机制以进一步提高准确性。进行了大量模拟示例以证明 G-MLKM 的性能,其平均数据-目标关联准确性为 92.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453c/8002009/94730cd8fbe5/sensors-21-02069-g001.jpg

相似文献

2
Design of double fuzzy clustering-driven context neural networks.双模糊聚类驱动的上下文神经网络设计。
Neural Netw. 2018 Aug;104:1-14. doi: 10.1016/j.neunet.2018.03.018. Epub 2018 Apr 9.
4
Multi-view projected clustering with graph learning.基于图学习的多视图投影聚类。
Neural Netw. 2020 Jun;126:335-346. doi: 10.1016/j.neunet.2020.03.020. Epub 2020 Apr 1.
5
Multi-Graph Multi-Label Learning Based on Entropy.基于熵的多图多标签学习
Entropy (Basel). 2018 Apr 2;20(4):245. doi: 10.3390/e20040245.
6
Learning locality preserving graph from data.从数据中学习保局图。
IEEE Trans Cybern. 2014 Nov;44(11):2088-98. doi: 10.1109/TCYB.2014.2300489. Epub 2014 Jul 8.
8
Distributed Graph Hashing.分布式图哈希
IEEE Trans Cybern. 2019 May;49(5):1896-1908. doi: 10.1109/TCYB.2018.2816791. Epub 2018 Apr 5.
10
Kernel k-Groups via Hartigan's Method.基于哈蒂根方法的核k群
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4411-4425. doi: 10.1109/TPAMI.2020.2998120. Epub 2021 Nov 3.

本文引用的文献

1
How neural networks learn from experience.神经网络如何从经验中学习。
Sci Am. 1992 Sep;267(3):144-51. doi: 10.1038/scientificamerican0992-144.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验