Suppr超能文献

基于哈蒂根方法的核k群

Kernel k-Groups via Hartigan's Method.

作者信息

Franca Guilherme, Rizzo Maria L, Vogelstein Joshua T

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4411-4425. doi: 10.1109/TPAMI.2020.2998120. Epub 2021 Nov 3.

Abstract

Energy statistics was proposed by Székely in the 80's inspired by Newton's gravitational potential in classical mechanics and it provides a model-free hypothesis test for equality of distributions. In its original form, energy statistics was formulated in euclidean spaces. More recently, it was generalized to metric spaces of negative type. In this paper, we consider a formulation for the clustering problem using a weighted version of energy statistics in spaces of negative type. We show that this approach leads to a quadratically constrained quadratic program in the associated kernel space, establishing connections with graph partitioning problems and kernel methods in machine learning. To find local solutions of such an optimization problem, we propose kernel k-groups, which is an extension of Hartigan's method to kernel spaces. Kernel k-groups is cheaper than spectral clustering and has the same computational cost as kernel k-means (which is based on Lloyd's heuristic) but our numerical results show an improved performance, especially in higher dimensions. Moreover, we verify the efficiency of kernel k-groups in community detection in sparse stochastic block models which has fascinating applications in several areas of science.

摘要

能量统计量由塞凯利在80年代提出,其灵感来源于经典力学中的牛顿引力势,它为分布相等提供了一种无模型的假设检验。在其原始形式中,能量统计量是在欧几里得空间中制定的。最近,它被推广到负型度量空间。在本文中,我们考虑在负型空间中使用能量统计量的加权版本来解决聚类问题。我们表明,这种方法在相关核空间中导致一个二次约束二次规划,从而建立了与机器学习中的图划分问题和核方法的联系。为了找到此类优化问题的局部解,我们提出了核k组方法,它是哈蒂根方法到核空间的扩展。核k组方法比谱聚类更便宜,并且与核k均值(基于劳埃德启发式算法)具有相同的计算成本,但我们的数值结果显示其性能有所提高,尤其是在高维情况下。此外,我们验证了核k组方法在稀疏随机块模型的社区检测中的效率,该模型在多个科学领域有着引人入胜的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58b/8715390/19ce316e8ddb/nihms-1753904-f0001.jpg

相似文献

1
Kernel k-Groups via Hartigan's Method.基于哈蒂根方法的核k群
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4411-4425. doi: 10.1109/TPAMI.2020.2998120. Epub 2021 Nov 3.
2
The global kernel k-means algorithm for clustering in feature space.用于特征空间聚类的全局核k均值算法。
IEEE Trans Neural Netw. 2009 Jul;20(7):1181-94. doi: 10.1109/TNN.2009.2019722. Epub 2009 May 29.
4
Multiple Kernel k-Means Clustering by Selecting Representative Kernels.通过选择代表性核进行多核k均值聚类
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4983-4996. doi: 10.1109/TNNLS.2020.3026532. Epub 2021 Oct 27.
5
Consensus Affinity Graph Learning for Multiple Kernel Clustering.用于多核聚类的共识亲和图学习
IEEE Trans Cybern. 2021 Jun;51(6):3273-3284. doi: 10.1109/TCYB.2020.3000947. Epub 2021 May 18.
6
Simultaneous Global and Local Graph Structure Preserving for Multiple Kernel Clustering.用于多核聚类的全局和局部图结构同时保留
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):1839-1851. doi: 10.1109/TNNLS.2020.2991366. Epub 2021 May 3.
9
Implicit Annealing in Kernel Spaces: A Strongly Consistent Clustering Approach.核空间中的隐式退火:一种强一致性聚类方法。
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5862-5871. doi: 10.1109/TPAMI.2022.3217137. Epub 2023 Apr 3.
10
Weighted Mutual Information for Aggregated Kernel Clustering.聚合核聚类的加权互信息
Entropy (Basel). 2020 Mar 18;22(3):351. doi: 10.3390/e22030351.

本文引用的文献

2
Phase transitions in semidefinite relaxations.半定松弛中的相变。
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2218-23. doi: 10.1073/pnas.1523097113. Epub 2016 Mar 21.
3
Spectral redemption in clustering sparse networks.聚类稀疏网络中的谱救赎。
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20935-40. doi: 10.1073/pnas.1312486110. Epub 2013 Nov 25.
4
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.模块化网络随机块模型的渐近分析及其算法应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
5
Mercer kernel-based clustering in feature space.特征空间中基于 Mercer 核的聚类
IEEE Trans Neural Netw. 2002;13(3):780-4. doi: 10.1109/TNN.2002.1000150.
6
Weighted graph cuts without eigenvectors a multilevel approach.无需特征向量的加权图割:一种多级方法。
IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1944-57. doi: 10.1109/TPAMI.2007.1115.
7
Community structure in social and biological networks.社会和生物网络中的群落结构。
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6. doi: 10.1073/pnas.122653799.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验