Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
Nat Prod Rep. 2021 Apr 28;38(4):723-756. doi: 10.1039/d0np00045k.
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
2008 年至 2020 年 8 月聚酮类化合物是一类天然产物,由简单的构建块构建而成,可生成具有生物活性的多种复杂化学结构,具有药物和农用化学品的重要性。它们的生物合成受聚酮合酶(PKS)控制,PKS 催化硫酯的缩合,组装功能化的线性碳链。烷基支链可以安装在增长链的亲核α-或亲电β-碳上。聚酮β-支化是一种引人入胜的生物合成修饰,可将β-酮转化为β-烷基或功能化侧链。整体转化由多蛋白 3-羟基-3-甲基戊二酰基辅酶 A 合酶(HMGS)盒催化,类似于萜类生物合成中的甲羟戊酸途径。第一步通常涉及乙酰辅酶 A 与β-酮硫酯的亲电碳的醛醇加成,由 3-羟基-3-甲基戊二酰基辅酶 A 合酶(HMGS)催化。随后的脱水和脱羧反应选择性地生成α,β-或β,γ-不饱和β-烷基支链,这些支链可以进一步修饰。本综述涵盖 2008 年至 2020 年 8 月,总结了β-支链掺入的多样性以及每个催化步骤的机制细节。这扩展到了讨论含有多个β-支链的聚酮以及 PKS 为确保β-支链保真度所施加的选择性。最后,讨论了 HMGS 在数据挖掘中的应用、其他β-支链机制以及β-支链在这一重要类生物活性天然产物中的作用的现有知识。