Suppr超能文献

模拟病变相关的功能恢复机制。

Simulating lesion-dependent functional recovery mechanisms.

机构信息

Wellcome Centre for Human Neuroimaging, University College London, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.

Huawei 2012 Laboratories, London, UK.

出版信息

Sci Rep. 2021 Apr 2;11(1):7475. doi: 10.1038/s41598-021-87005-4.

Abstract

Functional recovery after brain damage varies widely and depends on many factors, including lesion site and extent. When a neuronal system is damaged, recovery may occur by engaging residual (e.g., perilesional) components. When damage is extensive, recovery depends on the availability of other intact neural structures that can reproduce the same functional output (i.e., degeneracy). A system's response to damage may occur rapidly, require learning or both. Here, we simulate functional recovery from four different types of lesions, using a generative model of word repetition that comprised a default premorbid system and a less used alternative system. The synthetic lesions (i) completely disengaged the premorbid system, leaving the alternative system intact, (ii) partially damaged both premorbid and alternative systems, and (iii) limited the experience-dependent plasticity of both. The results, across 1000 trials, demonstrate that (i) a complete disconnection of the premorbid system naturally invoked the engagement of the other, (ii) incomplete damage to both systems had a much more devastating long-term effect on model performance and (iii) the effect of reducing learning capacity within each system. These findings contribute to formal frameworks for interpreting the effect of different types of lesions.

摘要

脑损伤后的功能恢复差异很大,取决于许多因素,包括损伤部位和范围。当一个神经元系统受损时,通过利用残留的(例如,损伤周围的)成分,可能会发生恢复。当损伤广泛时,恢复取决于是否有其他完整的神经结构可以产生相同的功能输出(即,退化)。系统对损伤的反应可能是迅速的,需要学习或两者兼而有之。在这里,我们使用包含默认发病前系统和使用较少的替代系统的单词重复生成模型,模拟了四种不同类型损伤的功能恢复。合成损伤(i)完全脱离发病前系统,保留替代系统完整,(ii)部分损伤发病前和替代系统,以及(iii)限制两者的经验依赖性可塑性。在 1000 次试验中,结果表明:(i)发病前系统的完全断开自然会引发另一个系统的介入,(ii)对两个系统的不完全损伤对模型性能有更具破坏性的长期影响,以及(iii)降低每个系统内学习能力的影响。这些发现有助于为解释不同类型损伤的影响提供形式框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d16a/8018968/94cbe733e75c/41598_2021_87005_Fig1_HTML.jpg

相似文献

1
Simulating lesion-dependent functional recovery mechanisms.
Sci Rep. 2021 Apr 2;11(1):7475. doi: 10.1038/s41598-021-87005-4.
2
Vision restoration after brain and retina damage: the "residual vision activation theory".
Prog Brain Res. 2011;192:199-262. doi: 10.1016/B978-0-444-53355-5.00013-0.
5
Integrated technology for evaluation of brain function and neural plasticity.
Phys Med Rehabil Clin N Am. 2004 Feb;15(1):263-306. doi: 10.1016/s1047-9651(03)00124-4.
6
Neural plasticity and neurorehabilitation: teaching the new brain old tricks.
J Commun Disord. 2011 Sep-Oct;44(5):521-8. doi: 10.1016/j.jcomdis.2011.04.006. Epub 2011 Apr 30.
8
Functional connectivity and neurological recovery.
Dev Psychobiol. 2012 Apr;54(3):239-53. doi: 10.1002/dev.20507. Epub 2010 Nov 17.
9
Therapy-induced brain reorganization patterns in aphasia.
Brain. 2015 Apr;138(Pt 4):1097-112. doi: 10.1093/brain/awv022. Epub 2015 Feb 15.

引用本文的文献

1
Degeneracy in the neurological model of auditory speech repetition.
Commun Biol. 2023 Nov 13;6(1):1161. doi: 10.1038/s42003-023-05515-5.
2
Anxious individuals shift emotion control from lateral frontal pole to dorsolateral prefrontal cortex.
Nat Commun. 2023 Aug 12;14(1):4880. doi: 10.1038/s41467-023-40666-3.

本文引用的文献

1
Very particular: Comment on "How particular is the physics of the free energy principle?".
Phys Life Rev. 2022 Jul;41:58-60. doi: 10.1016/j.plrev.2022.05.002. Epub 2022 May 10.
2
Active Inference: Demystified and Compared.
Neural Comput. 2021 Mar;33(3):674-712. doi: 10.1162/neco_a_01357. Epub 2021 Jan 5.
3
Paradoxical lesions, plasticity and active inference.
Brain Commun. 2020 Oct 1;2(2):fcaa164. doi: 10.1093/braincomms/fcaa164. eCollection 2020.
4
Active inference on discrete state-spaces: A synthesis.
J Math Psychol. 2020 Dec;99:102447. doi: 10.1016/j.jmp.2020.102447.
5
A unified neurocomputational bilateral model of spoken language production in healthy participants and recovery in poststroke aphasia.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32779-32790. doi: 10.1073/pnas.2010193117. Epub 2020 Dec 3.
6
Neuromodulatory Control and Language Recovery in Bilingual Aphasia: An Active Inference Approach.
Behav Sci (Basel). 2020 Oct 21;10(10):161. doi: 10.3390/bs10100161.
7
Active listening.
Hear Res. 2021 Jan;399:107998. doi: 10.1016/j.heares.2020.107998. Epub 2020 May 20.
8
Degeneracy and Redundancy in Active Inference.
Cereb Cortex. 2020 Oct 1;30(11):5750-5766. doi: 10.1093/cercor/bhaa148.
9
Generalised free energy and active inference.
Biol Cybern. 2019 Dec;113(5-6):495-513. doi: 10.1007/s00422-019-00805-w. Epub 2019 Sep 27.
10
Prefrontal Computation as Active Inference.
Cereb Cortex. 2020 Mar 21;30(2):682-695. doi: 10.1093/cercor/bhz118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验