Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cádiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro, S/N, 11510 Puerto Real, Cádiz, Spain; Faculty of Science and Technology, Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal.
Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cádiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro, S/N, 11510 Puerto Real, Cádiz, Spain.
Mater Sci Eng C Mater Biol Appl. 2021 Apr;123:112023. doi: 10.1016/j.msec.2021.112023. Epub 2021 Mar 10.
The present study is focused on the ultrafast and green synthesis, via the co-precipitation method, of magnetic nanoparticles (MNPs) based on iron oxides using design of experiments (DOE) and high energy sonochemical approach, considering two main factors: amplitude (energy) of the ultrasound probe and sonication time. The combination of these techniques allowed the development of a novel one-minute green synthesis, which drastically reduced the amount of consumed energy, solvents, reagents, time and produced residues. This green sonochemical synthesis permitted to obtain mean particle sizes of 11 ± 2 nm under the optimized conditions of amplitude = 40% (2826 J) and time = 1 min. Their composition, structure, size, morphology and magnetic properties were assessed through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM & TEM), and vibrating sample magnetometry (VSM). The characterization results indicate the proper formation of MNPs, and the correct functionalization of MNPs with different coating agents. The functionalized MNPs were used as: i) biosensor, which could detect mercury in water in the range of 0.030-0.060 ppm, and ii) support onto which polyclonal antibodies were anchored and successfully bound to an osteosarcoma cell line expressing the target protein (TRIB2-GFP), as part of an immunoprecipitation assay.
本研究专注于通过共沉淀法,使用实验设计 (DOE) 和高能超声化学方法,在两个主要因素的基础上,超快且绿色地合成基于氧化铁的磁性纳米颗粒 (MNPs):超声探头的振幅 (能量) 和超声时间。这些技术的结合使得开发出了一种新颖的一分钟绿色合成方法,大大减少了能量、溶剂、试剂、时间和产生的残留物的消耗。在振幅 = 40%(2826 J)和时间 = 1 分钟的优化条件下,该绿色超声化学合成可获得平均粒径为 11 ± 2 nm 的 MNPs。通过 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR)、热重分析 (TGA)、扫描和透射电子显微镜 (SEM 和 TEM) 以及振动样品磁强计 (VSM) 评估了它们的组成、结构、尺寸、形态和磁性能。表征结果表明 MNPs 的正确形成,以及 MNPs 与不同包覆剂的正确功能化。功能化的 MNPs 可用作:i)生物传感器,可检测水中的汞,范围为 0.030-0.060 ppm,ii)用于固定多克隆抗体并成功与表达靶蛋白 (TRIB2-GFP) 的骨肉瘤细胞系结合的载体,作为免疫沉淀测定的一部分。