Suppr超能文献

频域扩散光学层析成像中的信号回归以去除表面信号污染。

Signal regression in frequency-domain diffuse optical tomography to remove superficial signal contamination.

作者信息

Veesa Joshua D, Dehghani Hamid

机构信息

University of Birmingham, School of Computer Science, Birmingham, United Kingdom.

出版信息

Neurophotonics. 2021 Jan;8(1):015013. doi: 10.1117/1.NPh.8.1.015013. Epub 2021 Mar 31.

Abstract

Signal contamination is a major hurdle in functional near-infrared spectroscopy (fNIRS) of the human head as the NIR signal is contaminated with the changes corresponding to superficial tissue, therefore occluding the functional information originating from the cerebral region. For continuous wave, this is generally handled through linear regression of the shortest source-detector (SD) distance intensity measurement from all of the signals. Although phase measurements utilizing frequency domain (FD) provide deeper tissue sampling, the use of the shortest SD distance phase measurement for regression of superficial signal contamination can lead to misleading results, therefore suppressing cortical signals. An approach for FD fNIRS that utilizes a short-separation intensity signal directly to regress both intensity and phase measurements, providing a better regression of superficial signal contamination from both data-types, is proposed. Simulated data from realistic models of the human head are used, and signal regression using both intensity and phase-based components of the FD fNIRS is evaluated. Intensity-based phase regression achieves a suppression of superficial signal contamination by 68% whereas phase-based phase regression is only by 13%. Phase-based phase regression is also shown to generate false-positive signals from the cortex, which are not desirable. Intensity-based phase regression provides a better methodology for minimizing superficial signal contamination in FD fNIRS.

摘要

信号污染是人体头部功能近红外光谱(fNIRS)中的一个主要障碍,因为近红外信号会被与浅表组织相对应的变化所污染,从而掩盖了源自大脑区域的功能信息。对于连续波,这通常通过对所有信号中最短源探测器(SD)距离强度测量值进行线性回归来处理。尽管利用频域(FD)进行的相位测量能够对更深层的组织进行采样,但使用最短SD距离相位测量来回归浅表信号污染可能会导致误导性结果,进而抑制皮层信号。本文提出了一种用于FD fNIRS的方法,该方法直接利用短距离强度信号对强度和相位测量值进行回归,从而能更好地从这两种数据类型中回归浅表信号污染。使用了来自真实人体头部模型的模拟数据,并对利用FD fNIRS基于强度和相位的成分进行信号回归的情况进行了评估。基于强度的相位回归能够将浅表信号污染抑制68%,而基于相位的相位回归仅能抑制13%。基于相位的相位回归还会从皮层产生假阳性信号,这是不可取的。基于强度的相位回归为最小化FD fNIRS中的浅表信号污染提供了一种更好的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abd0/8011719/4f274b49e377/NPh-008-015013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验