Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Chemical and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
J Am Chem Soc. 2021 Apr 14;143(14):5445-5464. doi: 10.1021/jacs.1c00539. Epub 2021 Apr 4.
The direct synthesis of hydrogen peroxide (H + O → HO) may enable low-cost HO production and reduce environmental impacts of chemical oxidations. Here, we synthesize a series of PdAu nanoparticles (where 0 ≤ ≤ 220, ∼10 nm) and show that, in pure water solvent, HO selectivity increases with the Au to Pd ratio and approaches 100% for PdAu. Analysis of XAS and FTIR of adsorbed CO and CO show that materials with Au to Pd ratios of ∼40 and greater expose only monomeric Pd species during catalysis and that the average distance between Pd monomers increases with further dilution. quantum chemical simulations and experimental rate measurements indicate that both HO and HO form by reduction of a common OOH* intermediate by proton-electron transfer steps mediated by water molecules over Pd and PdAu nanoparticles. Measured apparent activation enthalpies and calculated activation barriers for HO and HO formation both increase as Pd is diluted by Au, even beyond the complete loss of Pd-Pd coordination. These effects impact HO formation more significantly, indicating preferential destabilization of transition states that cleave O-O bonds reflected by increasing HO selectivities (19% on Pd; 95% on PdAu) but with only a 3-fold reduction in HO formation rates. The data imply that the transition states for HO and HO formation pathways differ in their coordination to the metal surface, and such differences in site requirements require that we consider second coordination shells during the design of bimetallic catalysts.
过氧化氢的直接合成(H + O → HO)可能实现低成本的 HO 生产,并减少化学氧化过程对环境的影响。在这里,我们合成了一系列 PdAu 纳米颗粒(其中 0 ≤ ≤ 220,约 10nm),并表明在纯水中,HO 的选择性随 Au 与 Pd 的比例增加而增加,对于 PdAu 则接近 100%。对吸附 CO 和 CO 的 XAS 和 FTIR 分析表明,具有 Au 与 Pd 比例约为 40 及更高的材料在催化过程中仅暴露单体 Pd 物种,并且 Pd 单体之间的平均距离随进一步稀释而增加。量子化学模拟和实验速率测量表明,HO 和 HO 都是通过质子-电子转移步骤由水分子介导还原共同的 OOH* 中间体形成的,而在 Pd 和 PdAu 纳米颗粒上形成的中间体。测量的表观活化焓和计算的 HO 和 HO 形成的活化能垒都随 Pd 被 Au 稀释而增加,甚至超过 Pd-Pd 配位的完全损失。这些效应对 HO 形成的影响更为显著,表明过渡态的优先不稳定,这反映在 HO 选择性的增加上(Pd 上为 19%;PdAu 上为 95%),但 HO 形成速率仅降低了 3 倍。这些数据表明,HO 和 HO 形成途径的过渡态在其与金属表面的配位方式上存在差异,并且这种在配位要求上的差异要求我们在设计双金属催化剂时考虑第二配位壳层。