Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
J Am Chem Soc. 2021 Jun 2;143(21):7940-7957. doi: 10.1021/jacs.0c13399. Epub 2021 May 21.
We examine relationships between HO and HO formation on metal nanoparticles by the electrochemical oxygen reduction reaction (ORR) and the thermochemical direct synthesis of HO. The similar mechanisms of such reactions suggest that these catalysts should exhibit similar reaction rates and selectivities at equivalent electrochemical potentials (μ̅), determined by reactant activities, electrode potential, and temperature. We quantitatively compare the kinetic parameters for 12 nanoparticle catalysts obtained in a thermocatalytic fixed-bed reactor and a ring-disk electrode cell. Koutecky-Levich and Butler-Volmer analyses yield electrochemical rate constants and transfer coefficients, which informed mixed-potential models that treat each nanoparticle as a short-circuited electrochemical cell. These models require that the hydrogen oxidation reaction (HOR) and ORR occur at equal rates to conserve the charge on nanoparticles. These kinetic relationships predict that nanoparticle catalysts operate at potentials that depend on reactant activities (H, O), HO selectivity, and rate constants for the HOR and ORR, as confirmed by measurements of the operating potential during the direct synthesis of HO. The selectivities and rates of HO formation during thermocatalysis and electrocatalysis correlate across all catalysts when operating at equivalent μ̅ values. This analysis provides quantitative relationships that guide the optimization of HO formation rates and selectivities. Catalysts achieve the greatest HO selectivities when they operate at high H atom coverages, low temperatures, and potentials that maximize electron transfer toward stable OOH* and HO* while preventing excessive occupation of O-O antibonding states that lead to HO formation. These findings guide the design and operation of catalysts that maximize HO formation, and these concepts may inform other liquid-phase chemistries.
我们通过电化学氧气还原反应(ORR)和热化学直接合成 HO 来研究 HO 和 HO 形成在金属纳米粒子之间的关系。这些反应的相似机制表明,在等效电化学势(μ̅)下,这些催化剂应该表现出相似的反应速率和选择性,这由反应物活性、电极电势和温度决定。我们定量比较了在热催化固定床反应器和环盘电极电池中获得的 12 种纳米颗粒催化剂的动力学参数。Koutecky-Levich 和 Butler-Volmer 分析得出电化学速率常数和转移系数,这些参数为处理每个纳米颗粒作为短路电化学电池的混合电势模型提供了信息。这些模型要求氢氧化反应(HOR)和 ORR 以相等的速率发生,以保持纳米颗粒上的电荷。这些动力学关系预测,纳米颗粒催化剂在依赖于反应物活性(H、O)、HO 选择性以及 HOR 和 ORR 的速率常数的电势下工作,这通过直接合成 HO 期间操作电势的测量得到了证实。在等效 μ̅ 值下,热催化和电催化过程中的 HO 形成选择性和速率在所有催化剂之间相关。这种分析提供了定量关系,指导 HO 形成速率和选择性的优化。当催化剂在高 H 原子覆盖率、低温和电势下工作时,它们可以实现最大的 HO 选择性,这些电势可以最大限度地将电子转移到稳定的 OOH和 HO,同时防止过度占据导致 HO 形成的 O-O 反键态。这些发现指导了最大程度地提高 HO 形成的催化剂的设计和操作,这些概念可能为其他液相化学提供信息。