Suppr超能文献

硒磷酸合成酶基因, 对艰难梭菌的生理功能很重要。

The Selenophosphate Synthetase Gene, , Is Important for Clostridioides difficile Physiology.

机构信息

Department of Biology, Texas A&M University, College Station, Texas, USA.

出版信息

J Bacteriol. 2021 May 20;203(12):e0000821. doi: 10.1128/JB.00008-21. Epub 2021 Apr 5.

Abstract

The endospore-forming pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and is a significant burden on the community and health care. C. difficile, like all forms of life, incorporates selenium into proteins through a selenocysteine synthesis pathway. The known selenoproteins in C. difficile are involved in a metabolic process that uses amino acids as the sole carbon and nitrogen source (Stickland metabolism). The Stickland metabolic pathway requires the use of two selenium-containing reductases. In this study, we built upon our initial characterization of the CRISPR-Cas9-generated mutant by creating a CRISPR-Cas9-mediated restoration of the gene at the native locus. Here, we use these CRISPR-generated strains to analyze the importance of selenium-containing proteins on C. difficile physiology. SelD is the first enzyme in the pathway for selenoprotein synthesis, and we found that multiple aspects of C. difficile physiology were affected (e.g., growth, sporulation, and outgrowth of a vegetative cell post-spore germination). Using transcriptome sequencing (RNA-seq), we identified multiple candidate genes which likely aid the cell in overcoming the global loss of selenoproteins to grow in medium which is favorable for using Stickland metabolism. Our results suggest that the absence of selenophosphate (i.e., selenoprotein synthesis) leads to alterations to C. difficile physiology so that NAD can be regenerated by other pathways. C. difficile is a Gram-positive, anaerobic gut pathogen which infects thousands of individuals each year. In order to stop the C. difficile life cycle, other nonantibiotic treatment options are in urgent need of development. Toward this goal, we find that a metabolic process used by only a small fraction of the microbiota is important for C. difficile physiology: Stickland metabolism. Here, we use our CRISPR-Cas9 system to "knock in" a copy of the gene into the deletion strain to restore at its native locus. Our findings support the hypothesis that selenium-containing proteins are important for several aspects of C. difficile physiology, from vegetative growth to spore formation and outgrowth postgermination.

摘要

产芽孢病原体艰难梭菌是抗生素相关性腹泻的主要原因,也是社区和医疗保健的重大负担。艰难梭菌与所有生命形式一样,通过硒代半胱氨酸合成途径将硒纳入蛋白质。艰难梭菌中已知的硒蛋白参与使用氨基酸作为唯一碳源和氮源的代谢过程(Stickland 代谢)。Stickland 代谢途径需要使用两种含硒还原酶。在这项研究中,我们在最初对 CRISPR-Cas9 生成的突变体进行表征的基础上,通过在天然基因座上恢复 基因来构建 CRISPR-Cas9 介导的恢复。在这里,我们使用这些 CRISPR 生成的菌株来分析含硒蛋白对艰难梭菌生理学的重要性。SelD 是硒蛋白合成途径中的第一个酶,我们发现艰难梭菌生理学的多个方面受到影响(例如,生长、孢子形成和孢子萌发后营养细胞的出芽)。使用转录组测序(RNA-seq),我们确定了多个可能有助于细胞在有利于使用 Stickland 代谢的培养基中生长的候选基因。我们的结果表明,硒磷酸盐(即硒蛋白合成)的缺失导致艰难梭菌生理学发生改变,以便通过其他途径再生 NAD。艰难梭菌是一种革兰氏阳性、厌氧肠道病原体,每年感染数千人。为了阻止艰难梭菌的生命周期,迫切需要开发其他非抗生素治疗选择。为了实现这一目标,我们发现只有一小部分微生物群使用的代谢过程对艰难梭菌生理学很重要:Stickland 代谢。在这里,我们使用我们的 CRISPR-Cas9 系统将 基因的一个拷贝“敲入”缺失菌株,以在其天然基因座恢复 。我们的发现支持这样一种假设,即含硒蛋白对艰难梭菌生理学的几个方面很重要,从营养生长到孢子形成和萌发后出芽。

相似文献

9
In vivo requirement of selenophosphate for selenoprotein synthesis in archaea.古菌中硒代磷酸酯用于硒蛋白合成的体内需求。
Mol Microbiol. 2010 Jan;75(1):149-60. doi: 10.1111/j.1365-2958.2009.06970.x. Epub 2009 Nov 17.

引用本文的文献

1
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验