Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Microbiol Spectr. 2024 Oct 3;12(10):e0084424. doi: 10.1128/spectrum.00844-24. Epub 2024 Aug 21.
Selenium is a trace element that plays critical roles in redox biology; it is typically incorporated into "selenoproteins" as the 21st amino acid selenocysteine. Additionally, selenium exists as a labile non-selenocysteine cofactor in a small subset of selenoproteins known as selenium-dependent molybdenum hydroxylases (SDMHs). In purinolytic clostridia, SDMHs are implicated in the degradation of hypoxanthine, xanthine, and uric acid for carbon and nitrogen. While SDMHs have been biochemically analyzed, the genes responsible for the insertion and maturation of the selenium cofactor lack characterization. In this study, we utilized the nosocomial pathogen as a genetic model to begin characterizing this poorly understood selenium utilization pathway and its role in the catabolism of host-derived purines. We first observed that could utilize hypoxanthine, xanthine, or uric acid to overcome a growth defect in a minimal medium devoid of glycine and threonine. However, strains lacking selenophosphate synthetase ( mutants) still grew poorly in the presence of xanthine and uric acid, suggesting a selenium-dependent purinolytic process. Previous computational studies have identified and as potential candidates for cofactor maturation, so we subsequently deleted each gene using CRISPR-Cas9 technology. We surprisingly found that the growth of the Δ mutant in response to each purine was similar to the behavior of the mutants, while the Δ mutant exhibited no obvious phenotype. Our results suggest an important role for YqeB in selenium-dependent purine catabolism and also showcase as an appropriate model organism to study the biological use of selenium.IMPORTANCEThe apparent modification of bacterial molybdenum hydroxylases with a catalytically essential selenium cofactor is the least understood mechanism of selenium incorporation. Selenium-dependent molybdenum hydroxylases play an important role in scavenging carbon and nitrogen from purines for purinolytic clostridia. Here, we used as a genetic platform to begin dissecting the selenium cofactor trait and found genetic evidence for a selenium-dependent purinolytic pathway. The absence of or -a predicted genetic marker for the selenium cofactor trait-resulted in impaired growth on xanthine and uric acid, known substrates for selenium-dependent molybdenum hydroxylases. Our findings provide a genetic foundation for future research of this pathway and suggest a novel metabolic strategy for to scavenge host-derived purines from the gut.
硒是一种痕量元素,在氧化还原生物学中起着关键作用;它通常作为第 21 种氨基酸硒代半胱氨酸掺入“硒蛋白”中。此外,硒作为一种不稳定的非硒代半胱氨酸辅因子存在于一小部分称为硒依赖钼羟化酶 (SDMHs) 的硒蛋白中。在嘌呤分解梭菌中,SDMHs 参与了次黄嘌呤、黄嘌呤和尿酸的降解,以获取碳和氮。虽然已经对 SDMHs 进行了生化分析,但负责插入和成熟硒辅因子的基因特征尚未确定。在这项研究中,我们利用医院病原体 作为遗传模型,开始描述这一尚未充分了解的硒利用途径及其在宿主来源嘌呤分解代谢中的作用。我们首先观察到 可以利用次黄嘌呤、黄嘌呤或尿酸来克服缺乏甘氨酸和苏氨酸的最小培养基中的生长缺陷。然而,缺乏硒磷酸合成酶 ( 突变体)的菌株在黄嘌呤和尿酸存在的情况下仍生长不良,这表明存在硒依赖的嘌呤分解过程。先前的计算研究已经确定 和 是辅因子成熟的潜在候选基因,因此我们随后使用 CRISPR-Cas9 技术删除了每个基因。我们惊讶地发现,与嘌呤反应的 Δ 突变体的生长与 突变体的行为相似,而 Δ 突变体没有明显的表型。我们的结果表明 YqeB 在硒依赖的嘌呤分解代谢中起着重要作用,同时也展示了 作为研究硒生物利用的合适模型生物。
重要性
细菌钼羟化酶上催化必需硒辅因子的明显修饰是硒掺入的机制中了解最少的部分。硒依赖的钼羟化酶在嘌呤分解梭菌从嘌呤中清除碳和氮方面起着重要作用。在这里,我们使用 作为遗传平台开始剖析硒辅因子特征,并发现了硒依赖的嘌呤分解途径的遗传证据。 或 - 硒辅因子特征的预测遗传标记-的缺失导致在黄嘌呤和尿酸上的生长受损,黄嘌呤和尿酸是硒依赖的钼羟化酶的已知底物。我们的发现为该途径的未来研究提供了遗传基础,并表明 从肠道中摄取宿主来源嘌呤的一种新的代谢策略。