Lian Qing, Wang Lina, Wang Guoliang, Mi Guojun, Li Bowei, Smith Joel A, Caprioglio Pietro, Kober-Czerny Manuel, Wang Deng, Yin Qiming, Yang Jiong, Li Sibo, Liang Xiao, Gong Shaokuan, Li Dongyang, Hu Hanlin, Chen Xihan, Guo Xugang, Qiu Longbin, Xu Baomin, Li Gang, Ho-Baillie Anita W Y, Zhang Wei, Luo Guangfu, Snaith Henry J, Cheng Chun
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
School of Physics and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
Natl Sci Rev. 2025 May 22;12(7):nwaf211. doi: 10.1093/nsr/nwaf211. eCollection 2025 Jul.
Utilizing molecular bridges presents a promising means to enhance the performance of perovskite solar cells (PSCs). However, concurrently bridging the perovskite absorber and its two adjacent interfaces remains a significant challenge that is yet to be achieved. Here, we construct dual molecular bridges at perovskite heterointerfaces, enabled by a self-organizing additive of 4-fluoro-phenethylammonium formate (4-F-PEAFa) and a synthesized hole transporter of [2-(7H-dibenzo[c, g]carbazol-7-yl)ethyl]phosphonic acid (DBZ-2PACz). The molecular bridges spanning two interfaces lead to the formation of an 'integral carrier transport pathway', mitigating both non-radiative recombination and charge-transport losses in the fabricated PSC devices. We thus achieve a champion power conversion efficiency (PCE) of 26.0% (25.6% certified) in inverted PSCs, accompanied by an exceptionally high fill factor of 0.87 (maximum 0.88 from the certified devices, 97% of its Shockley-Queisser limit) and a low ideality factor of 1.06. The unencapsulated devices retain 96% of their PCEs after aging at 85°C for 2200 h and 90% after maximum power point tracking at an elevated temperature of 50°C for 973 h.
利用分子桥是提高钙钛矿太阳能电池(PSC)性能的一种有前景的方法。然而,同时桥接钙钛矿吸收层及其两个相邻界面仍然是一个尚未实现的重大挑战。在此,我们通过自组装添加剂甲酸4-氟苯乙铵(4-F-PEAFa)和合成的空穴传输体[2-(7H-二苯并[c,g]咔唑-7-基)乙基]膦酸(DBZ-2PACz)在钙钛矿异质界面构建了双分子桥。跨越两个界面的分子桥导致形成“整体载流子传输路径”,减轻了所制备的PSC器件中的非辐射复合和电荷传输损失。因此,我们在倒置PSC中实现了26.0%的最佳功率转换效率(PCE)(认证值为25.6%),伴随着0.87的极高填充因子(认证器件的最大值为0.88,为其肖克利-奎塞尔极限的97%)和1.06的低理想因子。未封装的器件在85°C下老化2200小时后保留了其PCE的96%,在50°C的高温下进行最大功率点跟踪973小时后保留了90%。