Suppr超能文献

冻融诱导的具有形状回复和海绵状性能的大孔儿茶酚水凝胶。

Freeze-Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties.

机构信息

Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.

出版信息

ACS Biomater Sci Eng. 2021 Sep 13;7(9):4318-4329. doi: 10.1021/acsbiomaterials.0c01767. Epub 2021 Apr 6.

Abstract

Catechol-containing hydrogels have been exploited in biomedical fields due to their adhesive and cohesive properties, hemostatic abilities, and biocompatibility. Catechol moieties can be oxidized to -catecholquinone, a chemically active intermediate, in the presence of oxygen to act as an electrophile to form catechol-catechol or catechol-amine/thiol adducts. To date, catechol cross-linking chemistry to fabricate hydrogels has been mostly performed at room temperature. Herein, we report large increases in catechol cross-linking reaction kinetics by the freeze-thawing process. The formation of ice crystals during freezing steps spatially condenses catechol-containing polymers into nearly frozen (yet unfrozen) regions, resulting in decreases in the polymeric chain distances. This environment allows great increases in catechol cross-linking kinetics, a phenomenon that can also occur during thawing steps. The increased cross-linking rate and spatial condensation in the cryogels provide unique wall and pore structures, which result in elastic, spongelike hydrogels. The moduli of the cryogels prepared by glycol-chitosan-catechol (g-chitosan-c) were improved by 3-6-fold compared to room temperature-cured conventional hydrogels, and the degree of improvement increased depending on the freezing time and the number of freeze-thawing cycles. Unlike typical cell encapsulations before cross-linking, which have often been a source of cytotoxicity, the macroporosity of cryogels allows nontoxic cell seeding with ease. This research offers a new way to utilize catechol cross-linking chemistry by freeze-thawing processes to simultaneously regulate mechanical strength and porous structures in catechol-containing hydrogels.

摘要

含儿茶酚的水凝胶由于其粘合性和内聚性、止血能力和生物相容性而在生物医学领域得到了广泛应用。儿茶酚部分在氧气存在下可以被氧化为 - 儿茶酚醌,这是一种化学活性中间体,可以作为亲电试剂形成儿茶酚-儿茶酚或儿茶酚-胺/硫醇加合物。迄今为止,用于制备水凝胶的儿茶酚交联化学主要在室温下进行。在此,我们报告了通过冻融过程大大提高儿茶酚交联反应动力学。在冷冻步骤中形成的冰晶会将含有儿茶酚的聚合物空间凝聚成几乎冻结(但未冻结)的区域,从而降低聚合物链的距离。这种环境允许儿茶酚交联动力学大大增加,这种现象也可能在解冻步骤中发生。在冷冻凝胶中增加的交联速率和空间凝聚提供了独特的壁和孔结构,从而产生弹性、海绵状水凝胶。与室温下固化的传统水凝胶相比,通过乙二醇壳聚糖-儿茶酚(g-壳聚糖-c)制备的冷冻凝胶的模量提高了 3-6 倍,并且提高的程度取决于冷冻时间和冻融循环的次数。与交联前典型的细胞包封不同,交联前的典型细胞包封常常是细胞毒性的来源,而冷冻凝胶的大孔率允许非毒性细胞轻松接种。这项研究提供了一种新的方法,通过冻融过程利用儿茶酚交联化学,同时调节含儿茶酚水凝胶的机械强度和多孔结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验