Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA.
California NanoSystems Institute, University of California at Santa Barbara, Santa Barbara, CA, USA.
Nature. 2021 Apr;592(7853):220-224. doi: 10.1038/s41586-021-03409-2. Epub 2021 Apr 7.
In condensed-matter systems, higher temperatures typically disfavour ordered phases, leading to an upper critical temperature for magnetism, superconductivity and other phenomena. An exception is the Pomeranchuk effect in He, in which the liquid ground state freezes upon increasing the temperature, owing to the large entropy of the paramagnetic solid phase. Here we show that a similar mechanism describes the finite-temperature dynamics of spin and valley isospins in magic-angle twisted bilayer graphene. Notably, a resistivity peak appears at high temperatures near a superlattice filling factor of -1, despite no signs of a commensurate correlated phase appearing in the low-temperature limit. Tilted-field magnetotransport and thermodynamic measurements of the in-plane magnetic moment show that the resistivity peak is connected to a finite-field magnetic phase transition at which the system develops finite isospin polarization. These data are suggestive of a Pomeranchuk-type mechanism, in which the entropy of disordered isospin moments in the ferromagnetic phase stabilizes the phase relative to an isospin-unpolarized Fermi liquid phase at higher temperatures. We find the entropy, in units of Boltzmann's constant, to be of the order of unity per unit cell area, with a measurable fraction that is suppressed by an in-plane magnetic field consistent with a contribution from disordered spins. In contrast to He, however, no discontinuities are observed in the thermodynamic quantities across this transition. Our findings imply a small isospin stiffness, with implications for the nature of finite-temperature electron transport, as well as for the mechanisms underlying isospin ordering and superconductivity in twisted bilayer graphene and related systems.
在凝聚态系统中,较高的温度通常不利于有序相,导致磁、超导和其他现象的上临界温度。一个例外是 He 中的 Pomeranchuk 效应,其中液体基态在温度升高时冻结,这是由于顺磁固相的熵很大。在这里,我们表明,类似的机制描述了魔角扭曲双层石墨烯中自旋和谷等自旋的有限温度动力学。值得注意的是,尽管在低温极限下没有出现同相相关相的迹象,但在接近超晶格填充因子-1 的高温下出现了电阻率峰值。倾斜场磁输运和平面内磁矩的热力学测量表明,电阻率峰值与有限磁场相变有关,在该相变中,系统会产生有限的等自旋极化。这些数据表明存在 Pomeranchuk 型机制,其中无序等自旋矩的熵在铁磁相中稳定了相对于高温下无极化费米液体相的相。我们发现,每个单位晶胞面积的熵,以玻尔兹曼常数为单位,约为 1,其中有一部分可被平面内磁场抑制,这与无序自旋的贡献一致。然而,与 He 不同的是,在这个相变中,热力学量没有观察到不连续性。我们的发现意味着等自旋的刚性较小,这对有限温度电子输运的性质以及扭曲双层石墨烯和相关系统中等自旋有序和超导的机制都有影响。