Suppr超能文献

估计时变图形模型。

Estimating Time-Varying Graphical Models.

作者信息

Yang Jilei, Peng Jie

机构信息

Department of Statistics, University of California, Davis.

出版信息

J Comput Graph Stat. 2020;29(1):191-202. doi: 10.1080/10618600.2019.1647848. Epub 2019 Sep 3.

Abstract

In this paper, we study time-varying graphical models based on data measured over a temporal grid. Such models are motivated by the needs to describe and understand evolving interacting relationships among a set of random variables in many real applications, for instance the study of how stock prices interact with each other and how such interactions change over time. We propose a new model, (loggle), under the assumption that the graph topology changes gradually over time. Specifically, loggle uses a novel local group-lasso type penalty to efficiently incorporate information from neighboring time points and to impose structural smoothness of the graphs. We implement an ADMM based algorithm to fit the loggle model. This algorithm utilizes blockwise fast computation and pseudo-likelihood approximation to improve computational efficiency. An R package loggle has also been developed and is available on https://cran.r-project.org/. We evaluate the performance of loggle by simulation experiments. We also apply loggle to S&P 500 stock price data and demonstrate that loggle is able to reveal the interacting relationships among stock prices and among industrial sectors in a time period that covers the recent global financial crisis. The supplemental materials for this paper are also available online.

摘要

在本文中,我们基于在时间网格上测量的数据研究时变图形模型。此类模型的动机在于,在许多实际应用中需要描述和理解一组随机变量之间不断演变的相互作用关系,例如研究股票价格如何相互影响以及这种相互作用如何随时间变化。我们提出了一种新模型(loggle),假设图拓扑随时间逐渐变化。具体而言,loggle使用一种新颖的局部组套索型惩罚来有效整合来自相邻时间点的信息,并施加图的结构平滑性。我们实现了一种基于交替方向乘子法(ADMM)的算法来拟合loggle模型。该算法利用分块快速计算和伪似然近似来提高计算效率。还开发了一个R包loggle,可在https://cran.r-project.org/获取。我们通过模拟实验评估loggle的性能。我们还将loggle应用于标准普尔500指数股票价格数据,并证明loggle能够揭示在涵盖近期全球金融危机的时间段内股票价格之间以及行业部门之间的相互作用关系。本文的补充材料也可在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c78/8023339/05428dd723b3/nihms-1053832-f0001.jpg

相似文献

1
Estimating Time-Varying Graphical Models.估计时变图形模型。
J Comput Graph Stat. 2020;29(1):191-202. doi: 10.1080/10618600.2019.1647848. Epub 2019 Sep 3.
2
Efficient Variational Bayes Learning of Graphical Models With Smooth Structural Changes.具有平滑结构变化的图形模型的高效变分贝叶斯学习
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):475-488. doi: 10.1109/TPAMI.2022.3140886. Epub 2022 Dec 5.

本文引用的文献

2
Inferring slowly-changing dynamic gene-regulatory networks.推断缓慢变化的动态基因调控网络。
BMC Bioinformatics. 2015;16 Suppl 6(Suppl 6):S5. doi: 10.1186/1471-2105-16-S6-S5. Epub 2015 Apr 17.
4
Estimating networks with jumps.估计带跳跃的网络。
Electron J Stat. 2012;6:2069-2106. doi: 10.1214/12-EJS739.
9
Recovering time-varying networks of dependencies in social and biological studies.在社会和生物学研究中恢复随时间变化的依赖网络。
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11878-83. doi: 10.1073/pnas.0901910106. Epub 2009 Jul 1.
10
KELLER: estimating time-varying interactions between genes.凯勒:估计基因之间的时变相互作用。
Bioinformatics. 2009 Jun 15;25(12):i128-36. doi: 10.1093/bioinformatics/btp192.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验