Suppr超能文献

动态无向图形模型用于时变临床症状和神经影像学网络。

Dynamic undirected graphical models for time-varying clinical symptom and neuroimaging networks.

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York.

Department of Statistics, University of South Carolina, Columbia, South Carolina, USA.

出版信息

Stat Med. 2024 Sep 20;43(21):4131-4147. doi: 10.1002/sim.10143. Epub 2024 Jul 15.

Abstract

In this work, we propose methods to examine how the complex interrelationships between clinical symptoms and, separately, brain imaging biomarkers change over time leading up to the diagnosis of a disease in subjects with a known genetic near-certainty of disease. We propose a time-dependent undirected graphical model that ensures temporal and structural smoothness across time-specific networks to examine the trajectories of interactions between markers aligned at the time of disease onset. Specifically, we anchor subjects relative to the time of disease diagnosis (anchoring time) as in a revival process, and we estimate networks at each time point of interest relative to the anchoring time. To use all available data, we apply kernel weights to borrow information across observations that are close to the time of interest. Adaptive lasso weights are introduced to encourage temporal smoothness in edge strength, while a novel elastic fused- penalty removes spurious edges and encourages temporal smoothness in network structure. Our approach can handle practical complications such as unbalanced visit times. We conduct simulation studies to compare our approach with existing methods. We then apply our method to data from PREDICT-HD, a large prospective observational study of pre-manifest Huntington's disease (HD) patients, to identify symptom and imaging network changes that precede clinical diagnosis of HD.

摘要

在这项工作中,我们提出了一些方法来研究在具有已知疾病遗传近因的受试者中,临床症状与大脑影像生物标志物之间的复杂相互关系如何随时间变化,从而导致疾病的诊断。我们提出了一个时变无向图形模型,该模型确保了特定时间网络之间的时间和结构平滑性,以检查与疾病发作时间对齐的标志物之间相互作用的轨迹。具体来说,我们相对于疾病诊断时间(锚定时间)对主体进行锚定,就像在复兴过程中一样,并且我们相对于锚定时间估计每个感兴趣的时间点的网络。为了使用所有可用的数据,我们应用核权重来跨接近感兴趣时间的观察结果借用信息。引入自适应套索权重以鼓励边缘强度的时间平滑性,而新的弹性融合惩罚则去除虚假边缘并鼓励网络结构的时间平滑性。我们的方法可以处理不平衡访问时间等实际并发症。我们进行了模拟研究,以比较我们的方法与现有方法。然后,我们将我们的方法应用于 PREDICT-HD 的数据,这是一项针对无症状亨廷顿病(HD)患者的大型前瞻性观察性研究,以确定在 HD 临床诊断之前出现的症状和成像网络变化。

相似文献

5
Smoking cessation for secondary prevention of cardiovascular disease.戒烟对心血管疾病二级预防的作用。
Cochrane Database Syst Rev. 2022 Aug 8;8(8):CD014936. doi: 10.1002/14651858.CD014936.pub2.

本文引用的文献

1
Estimating Time-Varying Graphical Models.估计时变图形模型。
J Comput Graph Stat. 2020;29(1):191-202. doi: 10.1080/10618600.2019.1647848. Epub 2019 Sep 3.
8
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.
9
Survival models and health sequences.生存模型与健康序列。
Lifetime Data Anal. 2018 Oct;24(4):550-584. doi: 10.1007/s10985-018-9424-9. Epub 2018 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验