Suppr超能文献

用于改进高斯图形模型估计的聚类图形套索法。

The cluster graphical lasso for improved estimation of Gaussian graphical models.

作者信息

Tan Kean Ming, Witten Daniela, Shojaie Ali

机构信息

Department of Biostatistics, University of Washington, Seattle, WA 98195-7232, USA.

出版信息

Comput Stat Data Anal. 2015 May;85:23-36. doi: 10.1016/j.csda.2014.11.015.

Abstract

The task of estimating a Gaussian graphical model in the high-dimensional setting is considered. The graphical lasso, which involves maximizing the Gaussian log likelihood subject to a penalty, is a well-studied approach for this task. A surprising connection between the graphical lasso and hierarchical clustering is introduced: the graphical lasso in effect performs a two-step procedure, in which (1) single linkage hierarchical clustering is performed on the variables in order to identify connected components, and then (2) a penalized log likelihood is maximized on the subset of variables within each connected component. Thus, the graphical lasso determines the connected components of the estimated network via single linkage clustering. The single linkage clustering is known to perform poorly in certain finite-sample settings. Therefore, the , which involves clustering the features using an alternative to single linkage clustering, and then performing the graphical lasso on the subset of variables within each cluster, is proposed. Model selection consistency for this technique is established, and its improved performance relative to the graphical lasso is demonstrated in a simulation study, as well as in applications to a university webpage and a gene expression data sets.

摘要

考虑在高维环境下估计高斯图形模型的任务。图形拉索法是针对此任务经过充分研究的一种方法,它涉及在惩罚条件下最大化高斯对数似然。本文介绍了图形拉索法与层次聚类之间令人惊讶的联系:图形拉索法实际上执行了一个两步过程,其中:(1)对变量执行单链层次聚类以识别连通分量,然后(2)在每个连通分量内的变量子集上最大化惩罚对数似然。因此,图形拉索法通过单链聚类确定估计网络的连通分量。已知单链聚类在某些有限样本设置下表现不佳。因此,本文提出了一种方法,该方法涉及使用单链聚类的替代方法对特征进行聚类,然后对每个聚类内的变量子集执行图形拉索法。建立了该技术的模型选择一致性,并在模拟研究以及大学网页和基因表达数据集的应用中证明了其相对于图形拉索法的改进性能。

相似文献

3
Pathway Graphical Lasso.通路图形套索法
Proc AAAI Conf Artif Intell. 2015 Jan;2015:2617-2623.
5
High-Dimensional Gaussian Graphical Regression Models with Covariates.具有协变量的高维高斯图形回归模型
J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.
8
On Penalty Parameter Selection for Estimating Network Models.关于网络模型估计中惩罚参数选择的研究。
Multivariate Behav Res. 2021 Mar-Apr;56(2):288-302. doi: 10.1080/00273171.2019.1672516. Epub 2019 Nov 1.

引用本文的文献

4
The cluster D-trace loss for differential network analysis.用于差分网络分析的聚类D-迹损失
J Appl Stat. 2023 Aug 14;51(10):1843-1860. doi: 10.1080/02664763.2023.2245178. eCollection 2024.
5
Sparse Reduced Rank Huber Regression in High Dimensions.高维稀疏降秩Huber回归
J Am Stat Assoc. 2023;118(544):2383-2393. doi: 10.1080/01621459.2022.2050243. Epub 2022 Apr 15.
7
Gaussian graphical models with applications to omics analyses.高斯图模型及其在组学分析中的应用。
Stat Med. 2022 Nov 10;41(25):5150-5187. doi: 10.1002/sim.9546. Epub 2022 Sep 26.
8
A Blockwise Consistency Method for Parameter Estimation of Complex Models.一种用于复杂模型参数估计的逐块一致性方法。
Sankhya Ser B. 2018 Dec;80(1 Suppl):179-223. doi: 10.1007/s13571-018-0183-0. Epub 2019 Feb 7.

本文引用的文献

3
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
8
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
9
An Arabidopsis gene network based on the graphical Gaussian model.基于图形高斯模型的拟南芥基因网络。
Genome Res. 2007 Nov;17(11):1614-25. doi: 10.1101/gr.6911207. Epub 2007 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验