Suppr超能文献

利用眼动数据可视化加强空中交通管制员培训:一种动态网络方法。

Using Eye Movement Data Visualization to Enhance Training of Air Traffic Controllers: A Dynamic Network Approach.

作者信息

Mandal Saptarshi, Kang Ziho

机构信息

University of Oklahoma, USA.

出版信息

J Eye Mov Res. 2018 Aug 8;11(4). doi: 10.16910/jemr.11.4.1.

Abstract

The Federal Aviation Administration (FAA) forecasted substantial increase in the US air traffic volume creating a high demand in Air Traffic Control Specialists (ATCSs). Training times and passing rates for ATCSs might be improved if expert ATCSs' eye movement (EM) characteristics can be utilized to support effective training. However, effective EM visualization is difficult for a dynamic task (e.g. aircraft conflict detection and mitigation) that includes interrogating multi-element targets that are dynamically moving, appearing, disappearing, and overlapping within a display. To address the issues, a dynamic network-based approach is introduced that integrates adapted visualizations (i.e. time-frame networks and normalized dot/bar plots) with measures used in network science (i.e. indegree, closeness, and betweenness) to provide in-depth EM analysis. The proposed approach was applied in an aircraft conflict task using a high-fidelity simulator; employing the use of veteran ATCSs and pseudo pilots. Results show that, ATCSs' visual attention to multi-element dynamic targets can be effectively interpreted and supported through multiple evidences obtained from the various visualization and associated measures. In addition, we discovered that fewer eye fixation numbers or shorter eye fixation durations on a target may not necessarily indicate the target is less important when analyzing the flow of visual attention within a network. The results show promise in cohesively analyzing and visualizing various eye movement characteristics to better support training.

摘要

美国联邦航空管理局(FAA)预测,美国空中交通量将大幅增长,这将对空中交通管制专员(ATCS)产生巨大需求。如果能够利用专家级空中交通管制专员的眼动(EM)特征来支持有效培训,那么空中交通管制专员的培训时间和通过率可能会得到提高。然而,对于动态任务(例如飞机冲突检测与缓解)而言,有效的眼动可视化是困难的,这类任务包括在显示屏内对动态移动、出现、消失和重叠的多元素目标进行询问。为了解决这些问题,引入了一种基于动态网络的方法,该方法将经过调整的可视化(即时帧网络和归一化点/条图)与网络科学中使用的度量(即入度、接近度和中介中心性)相结合,以提供深入的眼动分析。所提出的方法应用于使用高保真模拟器的飞机冲突任务中,参与者包括经验丰富的空中交通管制专员和模拟飞行员。结果表明,通过从各种可视化和相关度量中获得的多种证据,可以有效地解释和支持空中交通管制专员对多元素动态目标的视觉注意力。此外,我们发现,在分析网络内视觉注意力的流动时,对目标的注视次数较少或注视持续时间较短不一定表明该目标不太重要。这些结果有望在综合分析和可视化各种眼动特征以更好地支持培训方面取得成效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba6/7899734/e225a3c3f929/jemr-11-04-a-figure-01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验