Suppr超能文献

太多厨子:用于协调多主体协作的贝叶斯推断。

Too Many Cooks: Bayesian Inference for Coordinating Multi-Agent Collaboration.

机构信息

Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology.

Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology.

出版信息

Top Cogn Sci. 2021 Apr;13(2):414-432. doi: 10.1111/tops.12525. Epub 2021 Apr 7.

Abstract

Collaboration requires agents to coordinate their behavior on the fly, sometimes cooperating to solve a single task together and other times dividing it up into sub-tasks to work on in parallel. Underlying the human ability to collaborate is theory-of-mind (ToM), the ability to infer the hidden mental states that drive others to act. Here, we develop Bayesian Delegation, a decentralized multi-agent learning mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer the hidden intentions of others by inverse planning. We test Bayesian Delegation in a suite of multi-agent Markov decision processes inspired by cooking problems. On these tasks, agents with Bayesian Delegation coordinate both their high-level plans (e.g., what sub-task they should work on) and their low-level actions (e.g., avoiding getting in each other's way). When matched with partners that act using the same algorithm, Bayesian Delegation outperforms alternatives. Bayesian Delegation is also a capable ad hoc collaborator and successfully coordinates with other agent types even in the absence of prior experience. Finally, in a behavioral experiment, we show that Bayesian Delegation makes inferences similar to human observers about the intent of others. Together, these results argue for the centrality of ToM for successful decentralized multi-agent collaboration.

摘要

协作要求代理在执行过程中协调其行为,有时共同合作完成单个任务,有时将其划分为子任务并行处理。人类协作的基础是心理理论(ToM),即推断驱使他人行动的隐藏心理状态的能力。在这里,我们开发了贝叶斯委托(Bayesian Delegation),这是一种具有这些能力的去中心化多代理学习机制。贝叶斯委托通过逆规划使代理能够快速推断他人的隐藏意图。我们在一系列受烹饪问题启发的多代理马尔可夫决策过程中测试了贝叶斯委托。在这些任务中,具有贝叶斯委托的代理协调他们的高级计划(例如,他们应该从事哪个子任务)和他们的低级行动(例如,避免相互妨碍)。当与使用相同算法的合作伙伴进行匹配时,贝叶斯委托的表现优于替代方案。贝叶斯委托也是一个有能力的临时协作者,即使在没有先前经验的情况下,也可以成功地与其他代理类型进行协调。最后,在行为实验中,我们表明贝叶斯委托对他人意图的推断与人类观察者相似。总之,这些结果表明心理理论对于成功的去中心化多代理协作至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验