Suppr超能文献

在分层多智能体感觉运动任务中,人类群体间协调源于并发协同优化。

Human intergroup coordination in a hierarchical multi-agent sensorimotor task arises from concurrent co-optimization.

作者信息

Schmid Gerrit, Braun Daniel A

机构信息

Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm University, 89081, Ulm, Germany.

出版信息

Sci Rep. 2025 Apr 28;15(1):14849. doi: 10.1038/s41598-025-97574-3.

Abstract

Division of labor and specialization are common principles observed across all levels of biological organisms and societies, including humans that often rely on specialized roles to achieve a shared goal in complex coordination tasks. Understanding these principles in a quantitative fashion remains a challenge. In this study, we explore a novel experimental paradigm where two specialized groups of human players-a sensor group and an actor group-collaborate to accomplish a shared sensorimotor task of steering a cursor into a target. With all decision-makers initially unaware of their contribution and in the absence of verbal communication, the study explores how the group dynamics evolve over time, evaluating performance in terms of learning speed, group coherence and intergroup coordination. To gain quantitative insights, we simulate different computational models, including Bayesian learning and bounded rationality models, to describe human participants' behavior. We also relate our findings to perceptual control theory, which emphasizes hierarchical control systems in which information flows bidirectionally between levels. Our results show that both human participants and model-based simulations (Bayesian and bounded rational agents) successfully complete the task. Over time, mutual information between actors and sensors increases, and cooperative behavior emerges within the groups. Interestingly, model-free hierarchical reinforcement learning fails to account for the observed data, being overwhelmed by task variability. In contrast, model-based approaches can be shown to generalize to larger groups and more complex network structures in evolutionary simulations. Our findings highlight the importance of internal models and concurrent co-optimization in facilitating adaptive coordination, offering insights into distributed information processing mechanisms.

摘要

分工与专业化是在所有生物有机体和社会层面都能观察到的普遍原则,包括人类,人类在复杂的协调任务中常常依靠特定角色来实现共同目标。以定量方式理解这些原则仍然是一项挑战。在本研究中,我们探索了一种新颖的实验范式,即两组特定的人类参与者——传感组和行动组——合作完成一项将光标引导至目标的共同感觉运动任务。在所有决策者最初都不知道自己的贡献且没有言语交流的情况下,该研究探讨了群体动态如何随时间演变,从学习速度、群体连贯性和组间协调方面评估表现。为了获得定量见解,我们模拟了不同的计算模型,包括贝叶斯学习模型和有限理性模型,以描述人类参与者的行为。我们还将研究结果与感知控制理论联系起来,该理论强调信息在不同层次间双向流动的分层控制系统。我们的结果表明,人类参与者和基于模型的模拟(贝叶斯和有限理性智能体)都成功完成了任务。随着时间推移,行动者和传感者之间的互信息增加,群体内部出现了合作行为。有趣的是,无模型分层强化学习无法解释所观察到的数据,被任务变异性所压倒。相比之下,基于模型的方法在进化模拟中可以推广到更大的群体和更复杂的网络结构。我们的研究结果突出了内部模型和并发协同优化在促进适应性协调方面的重要性,为分布式信息处理机制提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bda8/12038055/5b1d93a0602c/41598_2025_97574_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验