Suppr超能文献

[人工智能辅助预测乳腺癌淋巴结转移:当前及前瞻性研究]

[AI-assisted Prediction of Lymph Node Metastasis of Breast Cancer: Current and Prospective Research].

作者信息

Ding Yan, Han Meng-Xue, Liu Yue-Ping

机构信息

Department of Pathology, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.

出版信息

Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 Mar;52(2):162-165. doi: 10.12182/20210360102.

Abstract

One of the most important application of artificial intelligence (AI) in pathology is prediction, using morphological features, of patient prognosis and response to specific treatments. As one of the most common kinds of malignancies in the world and the crucial important cause of death due to malignant tumor among women, breast cancer has become the center of attention in clinical services. Axillary lymph node metastasis is an important prognostic factor in breast cancer. The accuracy of the assessment of axillary lymph node metastasis bears heavily on clinical diagnosis and treatment. At present, based on the principle of non-invasive procedures, many studies have been done to develop models that can be used to predict sentinel lymph node metastasis of breast cancer. However, different clinical and pathological parameters are used in these predictive models. How to analyze the clinical and pathological data of breast cancer patients in a more comprehensive way and how to establish a prediction model with better precision have become the future direction of development. In this paper, we describe the research progress of AI in pathology and the current status of its use in breast cancer research. We have conducted in-depth reflection and looked into the future of ways to predict effectively breast cancer lymph node metastasis and to establish more accurate and effective deep-learning algorithm based on AI assistance so as to continuously improve the diagnosis and treatment of breast cancer.

摘要

人工智能(AI)在病理学中最重要的应用之一是利用形态学特征预测患者的预后以及对特定治疗的反应。乳腺癌作为世界上最常见的恶性肿瘤之一,也是女性因恶性肿瘤死亡的重要原因,已成为临床医疗关注的焦点。腋窝淋巴结转移是乳腺癌重要的预后因素。腋窝淋巴结转移评估的准确性对临床诊断和治疗至关重要。目前,基于非侵入性检查的原则,人们开展了许多研究以开发可用于预测乳腺癌前哨淋巴结转移的模型。然而,这些预测模型所使用的临床和病理参数各不相同。如何更全面地分析乳腺癌患者的临床和病理数据,以及如何建立精度更高的预测模型已成为未来的发展方向。在本文中,我们阐述了AI在病理学方面的研究进展及其在乳腺癌研究中的应用现状。我们进行了深入思考,并展望了有效预测乳腺癌淋巴结转移以及基于AI辅助建立更准确有效的深度学习算法的未来发展方向,以便不断改进乳腺癌的诊断和治疗。

相似文献

2
[Current applications of artificial intelligence in tumor histopathology].[人工智能在肿瘤组织病理学中的当前应用]
Zhonghua Zhong Liu Za Zhi. 2018 Dec 23;40(12):885-889. doi: 10.3760/cma.j.issn.0253-3766.2018.12.002.

引用本文的文献

1
Predictive modeling for metastasis in oncology: current methods and future directions.肿瘤学中转移的预测模型:当前方法与未来方向。
Ann Med Surg (Lond). 2025 May 21;87(6):3489-3508. doi: 10.1097/MS9.0000000000003279. eCollection 2025 Jun.

本文引用的文献

4
Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging.深度学习从连续医学成像预测肺癌治疗反应。
Clin Cancer Res. 2019 Jun 1;25(11):3266-3275. doi: 10.1158/1078-0432.CCR-18-2495. Epub 2019 Apr 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验