Suppr超能文献

肿瘤学中转移的预测模型:当前方法与未来方向。

Predictive modeling for metastasis in oncology: current methods and future directions.

作者信息

Abbas Ghulam H, Khouri Edmon R, Thaher Omar, Taha Safwan, Vladimirov Miljana, Oviedo Rodolfo J, Schmidt Jeremias, Bausch Dirk, Pouwels Sjaak

机构信息

Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic.

Department of Medicine, Mass General Brigham, Boston, Massachusetts, USA.

出版信息

Ann Med Surg (Lond). 2025 May 21;87(6):3489-3508. doi: 10.1097/MS9.0000000000003279. eCollection 2025 Jun.

Abstract

Predictive modeling for metastasis in oncology has gained significant traction due to its potential to improve prognosis, guide treatment strategies and enhance patient outcomes. Current methods leverage advancements in machine learning, genomics and imaging technologies to predict the likelihood of cancer spread. Techniques such as logistic regression, decision trees, support vector machines and neural networks have been employed to analyze clinical, pathological, and molecular data. Genomic profiling, liquid biopsies, and radiomics are increasingly integrated into these models to identify metastatic patterns and risk factors. Despite these advances, challenges persist, including data heterogeneity, model interpretability, and the need for larger, high-quality datasets for validation. Furthermore, the integration of artificial intelligence with precision medicine offers promising avenues for more personalized metastasis predictions. Future directions focus on enhancing model accuracy through deep learning, improving the interpretability of black-box models, and incorporating multi-omics data to capture the complexity of metastatic mechanisms. With the advent of advanced computational tools and growing datasets, predictive modeling in oncology is poised to revolutionize metastasis management, offering clinicians' valuable insights for early detection and tailored treatment strategies.

摘要

肿瘤学中转移的预测模型因其在改善预后、指导治疗策略和提高患者治疗效果方面的潜力而受到广泛关注。当前的方法利用机器学习、基因组学和成像技术的进步来预测癌症扩散的可能性。逻辑回归、决策树、支持向量机和神经网络等技术已被用于分析临床、病理和分子数据。基因组分析、液体活检和放射组学越来越多地被纳入这些模型中,以识别转移模式和风险因素。尽管取得了这些进展,但挑战依然存在,包括数据异质性、模型可解释性以及需要更大规模、高质量的数据集进行验证。此外,人工智能与精准医学的整合为更个性化的转移预测提供了有前景的途径。未来的方向集中在通过深度学习提高模型准确性、改善黑箱模型的可解释性以及纳入多组学数据以捕捉转移机制的复杂性。随着先进计算工具的出现和数据集的不断增加,肿瘤学中的预测模型有望彻底改变转移管理,为临床医生提供早期检测和个性化治疗策略的宝贵见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102f/12140723/175ff212f5b7/ms9-87-3489-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验