Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
Acta Biomater. 2021 Jun;127:56-79. doi: 10.1016/j.actbio.2021.03.067. Epub 2021 Apr 6.
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
骨再生是一个跨学科的复杂课题,包括但不限于材料科学、生物力学、免疫学和生物学。在过去几十年中,我们见证了骨替代物的发展取得了令人瞩目的进展;然而,必须指出的是,最适合骨再生的生物材料仍然是一个激烈争论的领域。自发现以来,聚(乳酸-共-乙醇酸)(PLGA)由于其良好的生物相容性和可调节的生物降解性而广泛应用于骨组织工程。本综述系统地综述了过去和最近在开发基于 PLGA 的骨再生材料方面的进展。我们以基于 PLGA 的材料的不同应用形式为起点,通过许多实例描述了每种形式的具体应用及其相应的优缺点。我们专注于静电纺丝纳米纤维支架、三维(3D)打印支架、微球/纳米颗粒、水凝胶、多相支架和通过其他传统和新兴方法制备的支架的进展。最后,我们简要讨论了基于 PLGA 的骨修复材料的当前局限性和未来方向。意义声明:作为骨组织工程应用中的一种关键合成生物聚合物,PLGA 基骨替代物的进展令人印象深刻。在本综述中,我们总结了过去和最近在开发基于 PLGA 的骨再生材料方面的进展。根据基于 PLGA 的替代物的典型应用形式和相应的工艺,我们描述了静电纺丝纳米纤维支架、3D 打印支架、微球/纳米颗粒、水凝胶、多相支架和通过其他制造工艺制备的支架的发展。最后,我们简要讨论了当前的局限性,并提出了设计和制造基于 PLGA 的骨材料或器件的新策略。