文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

介入心脏病学中人工智能的应用:当前应用的系统评价

Harnessing Artificial Intelligence in Interventional Cardiology: A Systematic Review of Current Applications.

作者信息

Patel Priyansh, Davitashvili Besiki, Chitturi Sai Sujana, Gadaevi Mari, Patel Diya, Tallapalli Jayanth Reddy, Butchireddy Jyothsna, Suresh Ria, Nannegari Jayanth Jhishnu, Slathia Shivam

机构信息

Department of Cardiovascular Medicine, University of Miami Miller School of Medicine, Miami, USA.

Department of Internal Medicine, Medical College, Baroda, Vadodara, IND.

出版信息

Cureus. 2025 Jul 7;17(7):e87494. doi: 10.7759/cureus.87494. eCollection 2025 Jul.


DOI:10.7759/cureus.87494
PMID:40777718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12329261/
Abstract

Interventional cardiology has recently advanced with innovations such as percutaneous transluminal coronary angioplasty (PTCA), transcatheter aortic valve replacement (TAVR), and the emergence of artificial intelligence (AI) as a transformative tool. This systematic review explored the current landscape, methodologies, and applications of AI in interventional cardiology. A comprehensive literature search was conducted following preferred reporting guidelines, identifying 20 studies after data extraction and quality assessment. AI-particularly machine learning (ML) and deep learning (DL)-enhances diagnostic accuracy and procedural efficiency. ML aids in arrhythmia detection and coronary plaque characterization, while DL supports imaging interpretation, robotic navigation, and catheter tracking. Clinical applications show AI's potential in predicting myocardial infarction, guiding personalized treatment, and improving resource management. Despite these benefits, challenges such as data privacy, algorithm transparency, and generalizability remain. Addressing these requires collaborative efforts and robust data sharing. Future priorities include integrating AI into routine clinical workflows, resolving regulatory barriers, and ensuring interpretability. Multidisciplinary collaboration is essential to address ethical considerations and uphold patient safety. The integration of AI in interventional cardiology offers significant potential to enhance patient care, procedural precision, and resource utilization. However, its adoption must be guided by careful attention to ethical, technical, and regulatory constraints. Overcoming these barriers through coordinated efforts may allow AI to redefine standards in cardiovascular care and enable a more precise, efficient, and patient-centered approach to interventional cardiology.

摘要

近年来,介入心脏病学随着经皮腔内冠状动脉成形术(PTCA)、经导管主动脉瓣置换术(TAVR)等创新技术以及作为变革性工具的人工智能(AI)的出现而取得了进展。本系统综述探讨了人工智能在介入心脏病学中的现状、方法和应用。按照首选报告指南进行了全面的文献检索,在数据提取和质量评估后确定了20项研究。人工智能,尤其是机器学习(ML)和深度学习(DL),提高了诊断准确性和手术效率。机器学习有助于心律失常检测和冠状动脉斑块特征分析,而深度学习则支持影像解读、机器人导航和导管跟踪。临床应用显示了人工智能在预测心肌梗死、指导个性化治疗和改善资源管理方面的潜力。尽管有这些好处,但数据隐私、算法透明度和可推广性等挑战仍然存在。解决这些问题需要共同努力和强大的数据共享。未来的优先事项包括将人工智能整合到常规临床工作流程中、解决监管障碍以及确保可解释性。多学科合作对于解决伦理问题和维护患者安全至关重要。人工智能在介入心脏病学中的整合为提高患者护理、手术精度和资源利用提供了巨大潜力。然而,其采用必须谨慎关注伦理、技术和监管限制。通过协调努力克服这些障碍可能会使人工智能重新定义心血管护理标准,并实现一种更精确、高效和以患者为中心的介入心脏病学方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a45/12329261/cf3436c7eb40/cureus-0017-00000087494-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a45/12329261/cf3436c7eb40/cureus-0017-00000087494-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a45/12329261/cf3436c7eb40/cureus-0017-00000087494-i01.jpg

相似文献

[1]
Harnessing Artificial Intelligence in Interventional Cardiology: A Systematic Review of Current Applications.

Cureus. 2025-7-7

[2]
Pharmacovigilance in the Era of Artificial Intelligence: Advancements, Challenges, and Considerations.

Cureus. 2025-6-29

[3]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[4]
Revolutionizing e-health: the transformative role of AI-powered hybrid chatbots in healthcare solutions.

Front Public Health. 2025-2-13

[5]
The Role of Artificial Intelligence in Heart Failure Diagnostics, Risk Prediction, and Therapeutic Strategies: A Comprehensive Review.

Cureus. 2025-7-1

[6]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[7]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[8]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[9]
Early warning score and feasible complementary approach using artificial intelligence-based bio-signal monitoring system: a review.

Biomed Eng Lett. 2025-6-25

[10]
Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation.

J Robot Surg. 2025-1-7

本文引用的文献

[1]
Artificial Intelligence, Computational Simulations, and Extended Reality in Cardiovascular Interventions.

JACC Cardiovasc Interv. 2023-10-23

[2]
The Role of Intracoronary Imaging for the Management of Calcified Lesions.

J Clin Med. 2023-7-11

[3]
Advances in Imaging for Tricuspid Transcatheter Edge-to-Edge Repair: Lessons Learned and Future Perspectives.

J Clin Med. 2023-5-10

[4]
Transapical TAVI: Survival, Hemodynamics, Devices and Machine Learning. Lessons Learned After 10-Year Experience.

Curr Probl Cardiol. 2023-8

[5]
: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis.

Campbell Syst Rev. 2022-3-27

[6]
Advances in Diagnosis, Therapy, and Prognosis of Coronary Artery Disease Powered by Deep Learning Algorithms.

JACC Asia. 2023-2-15

[7]
Advances in the Assessment of Coronary Artery Disease Activity with PET/CT and CTA.

Tomography. 2023-2-1

[8]
A survey of catheter tracking concepts and methodologies.

Med Image Anal. 2022-11

[9]
Applications of Machine Learning in Cardiology.

Cardiol Ther. 2022-9

[10]
Current State and Future Perspectives of Artificial Intelligence for Automated Coronary Angiography Imaging Analysis in Patients with Ischemic Heart Disease.

Curr Cardiol Rep. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索