Suppr超能文献

通过血管内光学相干断层扫描和人工智能评估冠状动脉钙化与心血管结局

Coronary artery calcification and cardiovascular outcome as assessed by intravascular OCT and artificial intelligence.

作者信息

Tian Jinwei, Li Chao, Qin Zhifeng, Zhang Yanwen, Xu Qinglu, Zheng Yuqi, Meng Xiangyu, Zhao Peng, Li Kaiwen, Zhao Suhong, Zhong Shan, Hou Xinyu, Peng Xiang, Yang Yuxin, Liu Yu, Wu Songzhi, Wang Yidan, Xi Xiangwen, Tian Yanan, Qu Wenbo, Sun Na, Wang Fan, Wang Yan, Xiong Jie, Ban Xiaofang, Yonetsu Taishi, Vergallo Rocco, Zhang Bo, Yu Bo, Wang Zhao

机构信息

Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.

School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Biomed Opt Express. 2024 Jul 3;15(8):4438-4452. doi: 10.1364/BOE.524946. eCollection 2024 Aug 1.

Abstract

Coronary artery calcification (CAC) is a marker of atherosclerosis and is thought to be associated with worse clinical outcomes. However, evidence from large-scale high-resolution imaging data is lacking. We proposed a novel deep learning method that can automatically identify and quantify CAC in massive intravascular OCT data trained using efficiently generated sparse labels. 1,106,291 OCT images from 1,048 patients were collected and utilized to train and evaluate the method. The Dice similarity coefficient for CAC segmentation and the accuracy for CAC classification are 0.693 and 0.932, respectively, close to human-level performance. Applying the method to 1259 ST-segment elevated myocardial infarction patients imaged with OCT, we found that patients with a greater extent and more severe calcification in the culprit vessels were significantly more likely to have major adverse cardiovascular and cerebrovascular events (MACCE) (p < 0.05), while the CAC in non-culprit vessels did not differ significantly between MACCE and non-MACCE groups.

摘要

冠状动脉钙化(CAC)是动脉粥样硬化的一个标志物,被认为与更差的临床结局相关。然而,缺乏来自大规模高分辨率成像数据的证据。我们提出了一种新颖的深度学习方法,该方法可以在使用高效生成的稀疏标签训练的大量血管内光学相干断层扫描(OCT)数据中自动识别和量化CAC。收集了来自1048名患者的1,106,291张OCT图像,并用于训练和评估该方法。CAC分割的Dice相似系数和CAC分类的准确率分别为0.693和0.932,接近人类水平。将该方法应用于1259例接受OCT成像的ST段抬高型心肌梗死患者,我们发现罪犯血管中钙化范围更大、程度更严重的患者发生主要不良心血管和脑血管事件(MACCE)的可能性显著更高(p<0.05),而在MACCE组和非MACCE组之间,非罪犯血管中的CAC没有显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03c9/11427185/d7772a49d81b/boe-15-8-4438-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验