Suppr超能文献

使用机器学习和基于细胞的假病毒颗粒测定法鉴定 SARS-CoV-2 病毒进入抑制剂。

Identification of SARS-CoV-2 viral entry inhibitors using machine learning and cell-based pseudotyped particle assay.

机构信息

National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Dr., Rockville, MD 20850, USA.

National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Dr., Rockville, MD 20850, USA.

出版信息

Bioorg Med Chem. 2021 May 15;38:116119. doi: 10.1016/j.bmc.2021.116119. Epub 2021 Mar 26.

Abstract

In response to the pandemic caused by SARS-CoV-2, we constructed a hybrid support vector machine (SVM) classification model using a set of publicly posted SARS-CoV-2 pseudotyped particle (PP) entry assay repurposing screen data to identify novel potent compounds as a starting point for drug development to treat COVID-19 patients. Two different molecular descriptor systems, atom typing descriptors and 3D fingerprints (FPs), were employed to construct the SVM classification models. Both models achieved reasonable performance, with the area under the curve of receiver operating characteristic (AUC-ROC) of 0.84 and 0.82, respectively. The consensus prediction outperformed the two individual models with significantly improved AUC-ROC of 0.91, where the compounds with inconsistent classifications were excluded. The consensus model was then used to screen the 173,898 compounds in the NCATS annotated and diverse chemical libraries. Of the 255 compounds selected for experimental confirmation, 116 compounds exhibited inhibitory activities in the SARS-CoV-2 PP entry assay with IC values ranged between 0.17 µM and 62.2 µM, representing an enrichment factor of 3.2. These 116 active compounds with diverse and novel structures could potentially serve as starting points for chemistry optimization for COVID-19 drug discovery.

摘要

针对由 SARS-CoV-2 引起的大流行,我们使用一组公开发布的 SARS-CoV-2 假型粒子 (PP) 进入测定重新用途筛选数据构建了混合支持向量机 (SVM) 分类模型,以鉴定新型有效化合物作为开发治疗 COVID-19 患者药物的起点。采用两种不同的分子描述符系统,原子类型描述符和 3D 指纹 (FP),构建 SVM 分类模型。两个模型都取得了合理的性能,接收者操作特征 (ROC) 的曲线下面积 (AUC-ROC) 分别为 0.84 和 0.82。共识预测优于两个单独的模型,AUC-ROC 显著提高至 0.91,其中排除了分类不一致的化合物。然后,使用共识模型筛选 NCATS 注释和多样化化学库中的 173,898 种化合物。在 255 种选择用于实验确认的化合物中,有 116 种化合物在 SARS-CoV-2 PP 进入测定中表现出抑制活性,IC 值范围在 0.17 µM 至 62.2 µM 之间,富集因子为 3.2。这些具有多样化和新颖结构的 116 种活性化合物可能成为 COVID-19 药物发现中化学优化的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2a1/7997310/58f3cf91e8a2/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验