Rodríguez Yoel, Cardoze Scarlet Martínez, Obineche Onyinyechi W, Melo Claudia, Persaud Ashanna, Fernández Romero José A
Department of Natural Sciences, Hostos Community College of The City University of New York, 500 Grand Concourse, Bronx, New York, New York 10451, United States.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States.
ACS Omega. 2022 Aug 9;7(33):28779-28789. doi: 10.1021/acsomega.2c00844. eCollection 2022 Aug 23.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic. Several variants of SARS-CoV-2 have emerged worldwide. These variants show different transmissibility infectivity due to mutations in the viral spike (S) glycoprotein that interacts with the human angiotensin-converting enzyme 2 (hACE2) receptor and facilitates viral entry into target cells. Despite the effective SARS-CoV-2 vaccines, we still need to identify selective antivirals, and the S glycoprotein is a key target to neutralize the virus. We hypothesize that small molecules could disrupt the interaction of S glycoprotein with hACE2 and inhibit viral entry. We analyzed the S glycoprotein-hACE2 complex structure (PDB: 7DF4) and created models for different viral variants using visual molecular dynamics (VMD) and molecular operating environment (MOE) programs. Moreover, we started the hits search by performing structure-based molecular docking virtual screening of commercially available small molecules against S glycoprotein models using OEDocking FRED-4.0.0.0 software. The FRED-4.0.0.0 Chemguass4 scoring function was used to rank the small molecules based on their affinities. The best candidate compounds were purchased and tested using a standard SARS-CoV-2 pseudotyped cell-based bioassay to investigate their antiviral activity. Three of these compounds, alone or in combination, showed antiviral selectivity. These small molecules may lead to an effective antiviral treatment or serve as probes to better understand the biology of SARS-CoV-2.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发了2019年冠状病毒病(COVID-19)大流行。SARS-CoV-2的几种变体已在全球出现。由于病毒刺突(S)糖蛋白发生突变,这些变体表现出不同的传播性和感染性,该糖蛋白与人类血管紧张素转换酶2(hACE2)受体相互作用并促进病毒进入靶细胞。尽管有有效的SARS-CoV-2疫苗,但我们仍需要确定选择性抗病毒药物,而S糖蛋白是中和病毒的关键靶点。我们假设小分子可以破坏S糖蛋白与hACE2的相互作用并抑制病毒进入。我们分析了S糖蛋白-hACE2复合物结构(蛋白质数据银行编号:7DF4),并使用可视化分子动力学(VMD)和分子操作环境(MOE)程序为不同的病毒变体创建模型。此外,我们通过使用OEDocking FRED-4.0.0.0软件对市售小分子针对S糖蛋白模型进行基于结构的分子对接虚拟筛选来开始寻找命中化合物。FRED-4.0.0.0 Chemguass4评分函数用于根据小分子的亲和力对其进行排名。购买了最佳候选化合物,并使用标准的基于SARS-CoV-2假型细胞的生物测定法进行测试,以研究它们的抗病毒活性。这些化合物中的三种单独或联合使用时显示出抗病毒选择性。这些小分子可能会带来有效的抗病毒治疗方法,或用作探针以更好地了解SARS-CoV-2的生物学特性。