Suppr超能文献

一种用于复杂模型参数估计的逐块一致性方法。

A Blockwise Consistency Method for Parameter Estimation of Complex Models.

作者信息

Shi Runmin, Liang Faming, Song Qifan, Luo Ye, Ghosh Malay

机构信息

Department of Statistics, University of Florida, Gainesville, FL 32611.

Department of Statistics, Purdue University, West Lafayette, IN 47906.

出版信息

Sankhya Ser B. 2018 Dec;80(1 Suppl):179-223. doi: 10.1007/s13571-018-0183-0. Epub 2019 Feb 7.

Abstract

The drastic improvement in data collection and acquisition technologies has enabled scientists to collect a great amount of data. With the growing dataset size, typically comes a growing complexity of data structures and of complex models to account for the data structures. How to estimate the parameters of complex models has put a great challenge on current statistical methods. This paper proposes a approach as a potential solution to the problem, which works by iteratively finding consistent estimates for each block of parameters conditional on the current estimates of the parameters in other blocks. The blockwise consistency approach decomposes the high-dimensional parameter estimation problem into a series of lower-dimensional parameter estimation problems, which often have much simpler structures than the original problem and thus can be easily solved. Moreover, under the framework provided by the blockwise consistency approach, a variety of methods, such as Bayesian and frequentist methods, can be jointly used to achieve a consistent estimator for the original high-dimensional complex model. The blockwise consistency approach is illustrated using two high-dimensional problems, variable selection and multivariate regression. The results of both problems show that the blockwise consistency approach can provide drastic improvements over the existing methods. Extension of the blockwise consistency approach to many other complex models is straightforward.

摘要

数据收集与获取技术的巨大进步使科学家能够收集大量数据。随着数据集规模的不断扩大,数据结构以及用于解释这些数据结构的复杂模型通常也会变得越来越复杂。如何估计复杂模型的参数给当前的统计方法带来了巨大挑战。本文提出了一种方法作为该问题的潜在解决方案,它通过在其他块参数的当前估计值条件下,对每个参数块迭代地找到一致估计值来工作。逐块一致性方法将高维参数估计问题分解为一系列低维参数估计问题,这些问题的结构通常比原始问题简单得多,因此可以轻松解决。此外,在逐块一致性方法提供的框架下,可以联合使用多种方法,如贝叶斯方法和频率论方法,来获得原始高维复杂模型的一致估计量。通过变量选择和多元回归这两个高维问题对逐块一致性方法进行了说明。两个问题的结果都表明,逐块一致性方法相比现有方法能带来显著改进。将逐块一致性方法扩展到许多其他复杂模型是很直接的。

相似文献

1
A Blockwise Consistency Method for Parameter Estimation of Complex Models.一种用于复杂模型参数估计的逐块一致性方法。
Sankhya Ser B. 2018 Dec;80(1 Suppl):179-223. doi: 10.1007/s13571-018-0183-0. Epub 2019 Feb 7.
8
Sieve estimation of Cox models with latent structures.具有潜在结构的Cox模型的筛法估计
Biometrics. 2016 Dec;72(4):1086-1097. doi: 10.1111/biom.12529. Epub 2016 Jul 6.
9
Likelihood-based selection and sharp parameter estimation.基于似然性的选择与精确参数估计。
J Am Stat Assoc. 2012 Jan 1;107(497):223-232. doi: 10.1080/01621459.2011.645783. Epub 2012 Jun 11.

引用本文的文献

1
Drug sensitivity prediction with high-dimensional mixture regression.基于高维混合回归的药物敏感性预测。
PLoS One. 2019 Feb 27;14(2):e0212108. doi: 10.1371/journal.pone.0212108. eCollection 2019.

本文引用的文献

8
: Coordinate Descent With Nonconvex Penalties.带非凸惩罚项的坐标下降法
J Am Stat Assoc. 2011;106(495):1125-1138. doi: 10.1198/jasa.2011.tm09738.
9
The graphical lasso: New insights and alternatives.图形套索:新见解与替代方法。
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
10
Sparse Multivariate Regression With Covariance Estimation.带协方差估计的稀疏多元回归
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验