Suppr超能文献

高维尖峰模型样本相关矩阵特征结构的渐近性

Asymptotics of eigenstructure of sample correlation matrices for high-dimensional spiked models.

作者信息

Morales-Jimenez David, Johnstone Iain M, McKay Matthew R, Yang Jeha

机构信息

ECIT Institute, Queen's University Belfast, UK.

Department of Statistics, Stanford University, USA.

出版信息

Stat Sin. 2021 Apr;31(2):571-601. doi: 10.5705/ss.202019.0052.

Abstract

Sample correlation matrices are widely used, but for high-dimensional data little is known about their spectral properties beyond "null models", which assume the data have independent coordinates. In the class of spiked models, we apply random matrix theory to derive asymptotic first-order and distributional results for both leading eigenvalues and eigenvectors of sample correlation matrices, assuming a high-dimensional regime in which the ratio , of number of variables to sample size , converges to a positive constant. While the first-order spectral properties of sample correlation matrices match those of sample covariance matrices, their asymptotic distributions can differ significantly. Indeed, the correlation-based fluctuations of both sample eigenvalues and eigenvectors are often remarkably smaller than those of their sample covariance counterparts.

摘要

样本相关矩阵被广泛使用,但对于高维数据,除了“零模型”(其假设数据具有独立坐标)之外,人们对其谱性质知之甚少。在尖峰模型类别中,我们应用随机矩阵理论来推导样本相关矩阵的主导特征值和特征向量的渐近一阶和分布结果,假设在高维情况下,变量数量与样本大小的比率收敛到一个正常数。虽然样本相关矩阵的一阶谱性质与样本协方差矩阵的一阶谱性质相匹配,但其渐近分布可能有显著差异。实际上,样本特征值和特征向量基于相关性的波动通常明显小于其样本协方差对应物的波动。

相似文献

3
Asymptotic Theory of Eigenvectors for Random Matrices with Diverging Spikes.具有发散尖峰的随机矩阵特征向量的渐近理论
J Am Stat Assoc. 2022;117(538):996-1009. doi: 10.1080/01621459.2020.1840990. Epub 2020 Dec 8.
5
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.尖峰协方差模型中特征值的最优收缩
Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.
9
PCA in High Dimensions: An orientation.高维主成分分析:一种导向
Proc IEEE Inst Electr Electron Eng. 2018 Aug;106(8):1277-1292. doi: 10.1109/JPROC.2018.2846730. Epub 2018 Jul 18.
10
Accuracy of Pseudo-Inverse Covariance Learning--A Random Matrix Theory Analysis.伪逆协方差学习的精度——随机矩阵理论分析。
IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1470-81. doi: 10.1109/TPAMI.2010.186. Epub 2010 Oct 14.

本文引用的文献

4
High-dimensional inference with the generalized Hopfield model: principal component analysis and corrections.广义霍普菲尔德模型的高维推理:主成分分析与校正
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051123. doi: 10.1103/PhysRevE.83.051123. Epub 2011 May 20.
5
Coordinate linkage of HIV evolution reveals regions of immunological vulnerability.HIV 进化的坐标连锁揭示了免疫脆弱区域。
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11530-5. doi: 10.1073/pnas.1105315108. Epub 2011 Jun 20.
6
Random matrix approach to cross correlations in financial data.金融数据中交叉相关性的随机矩阵方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 2):066126. doi: 10.1103/PhysRevE.65.066126. Epub 2002 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验