Suppr超能文献

尖峰协方差模型中特征值的最优收缩

Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.

作者信息

Donoho David L, Gavish Matan, Johnstone Iain M

机构信息

Department of Statistics, Stanford University.

School of Computer Science and Engineering, Hebrew University of Jerusalem.

出版信息

Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.

Abstract

We show that in a common high-dimensional covariance model, the choice of loss function has a profound effect on optimal estimation. In an asymptotic framework based on the Spiked Covariance model and use of orthogonally invariant estimators, we show that optimal estimation of the population covariance matrix boils down to design of an optimal shrinker that acts elementwise on the sample eigenvalues. Indeed, to each loss function there corresponds a unique admissible eigenvalue shrinker * dominating all other shrinkers. The shape of the optimal shrinker is determined by the choice of loss function and, crucially, by inconsistency of both eigenvalues eigenvectors of the sample covariance matrix. Details of these phenomena and closed form formulas for the optimal eigenvalue shrinkers are worked out for a menagerie of 26 loss functions for covariance estimation found in the literature, including the Stein, Entropy, Divergence, Fréchet, Bhattacharya/Matusita, Frobenius Norm, Operator Norm, Nuclear Norm and Condition Number losses.

摘要

我们表明,在一个常见的高维协方差模型中,损失函数的选择对最优估计有深远影响。在基于尖峰协方差模型的渐近框架以及使用正交不变估计器的情况下,我们表明总体协方差矩阵的最优估计归结为设计一个对样本特征值逐元素起作用的最优收缩器。实际上,对于每个损失函数,都对应一个唯一的可容许特征值收缩器*,它优于所有其他收缩器。最优收缩器的形状由损失函数的选择决定,关键是由样本协方差矩阵的特征值和特征向量的不一致性决定。对于文献中发现的用于协方差估计的26种损失函数,包括斯坦因、熵、散度、弗雷歇、巴塔查里亚/马图西塔、弗罗贝尼乌斯范数、算子范数、核范数和条件数损失,详细阐述了这些现象以及最优特征值收缩器的闭式公式。

相似文献

1
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.尖峰协方差模型中特征值的最优收缩
Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.
4
Inference on the Eigenvalues of the Normalized Precision Matrix.关于归一化精度矩阵特征值的推断
Linear Algebra Appl. 2024 Dec 15;703:78-108. doi: 10.1016/j.laa.2024.09.002. Epub 2024 Sep 10.
5
PCA in High Dimensions: An orientation.高维主成分分析:一种导向
Proc IEEE Inst Electr Electron Eng. 2018 Aug;106(8):1277-1292. doi: 10.1109/JPROC.2018.2846730. Epub 2018 Jul 18.
8
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.稀疏尖峰协方差矩阵的最优估计与秩检测
Probab Theory Relat Fields. 2015 Apr 1;161(3-4):781-815. doi: 10.1007/s00440-014-0562-z.

引用本文的文献

3
Mode-wise principal subspace pursuit and matrix spiked covariance model.模式主性子空间追踪与矩阵尖峰协方差模型
J R Stat Soc Series B Stat Methodol. 2024 Sep 2;87(1):232-255. doi: 10.1093/jrsssb/qkae088. eCollection 2025 Feb.
7
Linear Hypothesis Testing in Linear Models With High-Dimensional Responses.具有高维响应的线性模型中的线性假设检验
J Am Stat Assoc. 2022;117(540):1738-1750. doi: 10.1080/01621459.2021.1884561. Epub 2021 Apr 27.
9
James-Stein for the leading eigenvector.詹姆斯-斯廷为特征向量的主导。
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2207046120. doi: 10.1073/pnas.2207046120. Epub 2023 Jan 5.
10
How to reduce dimension with PCA and random projections?如何使用主成分分析(PCA)和随机投影进行降维?
IEEE Trans Inf Theory. 2021 Dec;67(12):8154-8189. doi: 10.1109/tit.2021.3112821. Epub 2021 Sep 14.

本文引用的文献

2
Condition Number Regularized Covariance Estimation.条件数正则化协方差估计
J R Stat Soc Series B Stat Methodol. 2013 Jun 1;75(3):427-450. doi: 10.1111/j.1467-9868.2012.01049.x.
3
Shrinkage estimators for covariance matrices.协方差矩阵的收缩估计量。
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验