AlHassan Ali, Abboud A, Cornelius T W, Ren Z, Thomas O, Richter G, Micha J-S, Send S, Hartmann R, Strüder L, Pietsch U
University of Siegen, Solid State Physics, Walter-Flex-Strasse 3, D-57072 Siegen, Germany.
Aix-Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France.
J Appl Crystallogr. 2021 Feb 1;54(Pt 1):80-86. doi: 10.1107/S1600576720014855.
This article reports on energy-dispersive micro Laue (µLaue) diffraction of an individual gold nanowire that was mechanically deformed in three-point bending geometry using an atomic force microscope. The nanowire deformation was investigated by scanning the focused polychromatic X-ray beam along the nanowire and recording µLaue diffraction patterns using an energy-sensitive pnCCD detector that permits measurement of the angular positions of the Laue spots and the energies of the diffracted X-rays simultaneously. The plastic deformation of the nanowire was shown by a bending of up to 3.0 ± 0.1°, a torsion of up to 0.3 ± 0.1° and a maximum deformation depth of 80 ± 5 nm close to the position where the mechanical load was applied. In addition, extended Laue spots in the vicinity of one of the clamping points indicated the storage of geometrically necessary dislocations with a density of 7.5 × 10 m. While µLaue diffraction with a non-energy-sensitive detector only gives access to the deviatoric strain, the energy sensitivity of the employed pnCCD offers absolute strain measurements with a resolution of 1%. Here, the residual strain after complete unloading of the nanowire amounted to maximum tensile and compressive strains of the order of +1.2 and -3%, which is comparable to the actual resolution limit. The combination of white-beam µLaue diffraction using an energy-sensitive pixel detector with nano-mechanical testing opens up new possibilities for the study of mechanical behavior at the nanoscale.
本文报道了使用原子力显微镜在三点弯曲几何结构中对单根金纳米线进行机械变形后的能量色散微劳厄(µLaue)衍射情况。通过沿纳米线扫描聚焦的多色X射线束并使用能量敏感型pnCCD探测器记录µLaue衍射图案来研究纳米线的变形,该探测器能够同时测量劳厄斑点的角位置和衍射X射线的能量。纳米线的塑性变形表现为高达3.0±0.1°的弯曲、高达0.3±0.1°的扭转以及在靠近施加机械载荷位置处最大80±5 nm的变形深度。此外,在其中一个夹紧点附近的扩展劳厄斑点表明存储了密度为7.5×10 m的几何必需位错。虽然使用非能量敏感型探测器的µLaue衍射仅能获取偏应变,但所采用的pnCCD的能量敏感性可提供分辨率为1%的绝对应变测量。在此,纳米线完全卸载后的残余应变达到了约+1.2%和 -3%的最大拉伸和压缩应变,这与实际分辨率极限相当。使用能量敏感型像素探测器的白光µLaue衍射与纳米力学测试相结合,为研究纳米尺度下的力学行为开辟了新的可能性。