Suppr超能文献

携带白细胞介素-10 的慢病毒水凝胶管可增加脊髓损伤后脊髓祖细胞的存活和神经元分化。

IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury.

机构信息

Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.

DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA.

出版信息

Biotechnol Bioeng. 2021 Jul;118(7):2609-2625. doi: 10.1002/bit.27781. Epub 2021 Apr 23.

Abstract

A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.

摘要

一种复杂的细胞级联反应特征在于脊髓损伤(SCI)后的病理生理反应,限制了再生。生物材料和干细胞联合治疗与每种干预措施的独立益处相比,显示出协同作用,代表了在受伤后恢复功能的一种有前途的方法。在这项研究中,我们将我们的聚乙二醇(PEG)细胞输送平台与慢病毒介导的抗炎细胞因子白细胞介素(IL)-10 的过表达相结合,以提高小鼠胚胎第 14 天(E14)脊髓祖细胞移植的存活率。在小鼠 SCI 半切模型中损伤后立即,植入五个 PEG 管,然后直接将编码 IL-10 的慢病毒注入管中。管植入两周后,将 E14 脊髓祖细胞直接注入整合管中,管作为细胞移植的软基质。编码 IL-10 的管与慢病毒一起,改善了 E14 脊髓祖细胞的存活,在移植后 2 周(损伤后 4 周)进行评估。平均而言,在接受携带 IL-10 慢病毒的管的小鼠中,有 8.1%的 E14 脊髓祖细胞存活,而在没有管的小鼠中只有 0.7%,差异为 11.5 倍。当注入管中时,存活的 E14 脊髓祖细胞产生神经元。观察到轴突伸长和再髓鞘形成,并且与仅接受损伤的对照相比,接受携带 E14 脊髓祖细胞的 IL-10 慢病毒管的小鼠的功能恢复显著增加,在损伤后 4 周。所有其他条件在损伤后 8 或 12 周才表现出增加的步态。该系统提供了对移植微环境的更大控制,为改善干细胞介导的组织再生提供了潜力。

相似文献

1
IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury.
Biotechnol Bioeng. 2021 Jul;118(7):2609-2625. doi: 10.1002/bit.27781. Epub 2021 Apr 23.
2
Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation.
ACS Biomater Sci Eng. 2020 Oct 12;6(10):5771-5784. doi: 10.1021/acsbiomaterials.0c00844. Epub 2020 Sep 14.
3
Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury.
Tissue Eng Part A. 2018 Nov;24(21-22):1588-1602. doi: 10.1089/ten.TEA.2018.0053. Epub 2018 Oct 19.
4
Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries.
J Control Release. 2015 Apr 28;204:1-10. doi: 10.1016/j.jconrel.2015.02.032. Epub 2015 Feb 24.
5
Building-Block Size Mediates Microporous Annealed Particle Hydrogel Tube Microenvironment Following Spinal Cord Injury.
Adv Healthc Mater. 2024 Oct;13(25):e2302498. doi: 10.1002/adhm.202302498. Epub 2023 Oct 5.
6
Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.
Neuroscience. 2016 Jul 22;328:40-9. doi: 10.1016/j.neuroscience.2016.04.031. Epub 2016 Apr 27.

引用本文的文献

3
The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury.
Diagnostics (Basel). 2024 Jan 9;14(2):151. doi: 10.3390/diagnostics14020151.
4
Building-Block Size Mediates Microporous Annealed Particle Hydrogel Tube Microenvironment Following Spinal Cord Injury.
Adv Healthc Mater. 2024 Oct;13(25):e2302498. doi: 10.1002/adhm.202302498. Epub 2023 Oct 5.
5
Neuroprotective effects of interleukin 10 in spinal cord injury.
Front Mol Neurosci. 2023 Jul 10;16:1214294. doi: 10.3389/fnmol.2023.1214294. eCollection 2023.
6
Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review.
Int J Mol Sci. 2022 Oct 27;23(21):12996. doi: 10.3390/ijms232112996.
7
Biomaterial-targeted precision nanoparticle delivery to the injured spinal cord.
Acta Biomater. 2022 Oct 15;152:532-545. doi: 10.1016/j.actbio.2022.08.077. Epub 2022 Sep 8.
8
Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment.
Biomedicines. 2022 Jul 12;10(7):1673. doi: 10.3390/biomedicines10071673.
9
Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats.
J Tissue Eng. 2022 Mar 22;13:20417314221086491. doi: 10.1177/20417314221086491. eCollection 2022 Jan-Dec.
10
Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury.
Cells. 2021 Aug 16;10(8):2102. doi: 10.3390/cells10082102.

本文引用的文献

1
Biomaterial Strategies to Bolster Neural Stem Cell-Mediated Repair of the Central Nervous System.
Cells Tissues Organs. 2022;211(6):655-669. doi: 10.1159/000515351. Epub 2021 Jun 11.
2
Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation.
ACS Biomater Sci Eng. 2020 Oct 12;6(10):5771-5784. doi: 10.1021/acsbiomaterials.0c00844. Epub 2020 Sep 14.
3
Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury.
Cell Stem Cell. 2020 Sep 3;27(3):430-440.e5. doi: 10.1016/j.stem.2020.07.007. Epub 2020 Aug 5.
4
Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States.
Medicines (Basel). 2020 May 12;7(5):27. doi: 10.3390/medicines7050027.
5
Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury.
Front Cell Neurosci. 2020 Apr 3;14:78. doi: 10.3389/fncel.2020.00078. eCollection 2020.
6
Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy.
Sci Adv. 2020 Apr 1;6(14):eaaz1039. doi: 10.1126/sciadv.aaz1039. eCollection 2020 Apr.
7
Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model.
Tissue Eng Part A. 2020 Jun;26(11-12):672-682. doi: 10.1089/ten.TEA.2019.0321. Epub 2020 Feb 25.
8
Moving beyond the glial scar for spinal cord repair.
Nat Commun. 2019 Aug 28;10(1):3879. doi: 10.1038/s41467-019-11707-7.
9
Regenerative Therapies for Spinal Cord Injury.
Tissue Eng Part B Rev. 2019 Dec;25(6):471-491. doi: 10.1089/ten.TEB.2019.0182. Epub 2019 Oct 23.
10
Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds.
Front Cell Neurosci. 2019 Jun 6;13:248. doi: 10.3389/fncel.2019.00248. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验